Ugrás a tartalomra
Merck
  • Targeting the actin/tropomyosin cytoskeleton in epithelial ovarian cancer reveals multiple mechanisms of synergy with anti-microtubule agents.

Targeting the actin/tropomyosin cytoskeleton in epithelial ovarian cancer reveals multiple mechanisms of synergy with anti-microtubule agents.

British journal of cancer (2021-05-14)
Xing Xu, Yao Wang, Nicole S Bryce, Katrina Tang, Nicola S Meagher, Eun Young Kang, Linda E Kelemen, Martin Köbel, Susan J Ramus, Michael Friedlander, Caroline E Ford, Edna C Hardeman, Peter W Gunning
KIVONAT

Anti-microtubule agents are widely used to treat ovarian cancers, but the efficacy is often compromised by drug resistance. We investigated co-targeting the actin/tropomyosin cytoskeleton and microtubules to increase treatment efficacy in ovarian cancers and potentially overcome resistance. The presence of tropomyosin-3.1 (Tpm3.1) was examined in clinical specimens from ovarian cancer patients using immunohistochemistry. Combinatorial effects of an anti-Tpm3.1 compound, ATM-3507, with vinorelbine and paclitaxel were evaluated in ovarian cancer cells via MTS and apoptosis assays. The mechanisms of action were established using live- and fixed-cell imaging and protein analysis. Tpm3.1 is overexpressed in 97% of tumour tissues (558 of 577) representing all histotypes of epithelial ovarian cancer. ATM-3507 displayed synergy with both anti-microtubule agents to reduce cell viability. Only vinorelbine synergised with ATM-3507 in causing apoptosis. ATM-3507 significantly prolonged vinorelbine-induced mitotic arrest with elevated activity of the spindle assembly checkpoint and mitotic cell death; however, ATM-3507 showed minor impact on paclitaxel-induced mitotic defects. Both combinations substantially increased post-mitotic G1 arrest with cyclin D1 and E1 downregulation and an increase of p21Cip and p27Kip. Combined targeting of Tpm3.1/actin and microtubules is a promising treatment strategy for ovarian cancer that should be further tested in clinical settings.

ANYAGOK
Cikkszám
Márka
Termékleírás

Sigma-Aldrich
Anti-Mouse IgG (whole molecule)–Peroxidase antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Paclitaxel, from semisynthetic, ≥98%
Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse
Sigma-Aldrich
ATM-3507, ≥95% (HPLC)
Sigma-Aldrich
MCDB 105 Medium (500 ml)