Ugrás a tartalomra
Merck
  • Footprinting SHAPE-eCLIP Reveals Transcriptome-wide Hydrogen Bonds at RNA-Protein Interfaces.

Footprinting SHAPE-eCLIP Reveals Transcriptome-wide Hydrogen Bonds at RNA-Protein Interfaces.

Molecular cell (2020-11-27)
Meredith Corley, Ryan A Flynn, Byron Lee, Steven M Blue, Howard Y Chang, Gene W Yeo, Meredith Corley, Ryan A Flynn, Byron Lee, Steven M Blue, Howard Y Chang, Gene W Yeo
KIVONAT

Discovering the interaction mechanism and location of RNA-binding proteins (RBPs) on RNA is critical for understanding gene expression regulation. Here, we apply selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) on in vivo transcripts compared to protein-absent transcripts in four human cell lines to identify transcriptome-wide footprints (fSHAPE) on RNA. Structural analyses indicate that fSHAPE precisely detects nucleobases that hydrogen bond with protein. We demonstrate that fSHAPE patterns predict binding sites of known RBPs, such as iron response elements in both known loci and previously unknown loci in CDC34, SLC2A4RG, COASY, and H19. Furthermore, by integrating SHAPE and fSHAPE with crosslinking and immunoprecipitation (eCLIP) of desired RBPs, we interrogate specific RNA-protein complexes, such as histone stem-loop elements and their nucleotides that hydrogen bond with stem-loop-binding proteins. Together, these technologies greatly expand our ability to study and understand specific cellular RNA interactions in RNA-protein complexes.

ANYAGOK
Cikkszám
Márka
Termékleírás

Deferoxamine mesylate salt, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Deferoxamine mesylate salt, powder, ≥92.5% (TLC)
Sigma-Aldrich
N-Lauroylsarcosine sodium salt solution, 20%, for molecular biology