跳转至内容
Merck
  • The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor.

The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor.

Molecular pharmacology (2015-03-15)
María José Varela Liste, Gianluigi Caltabiano, Richard J Ward, Elisa Alvarez-Curto, Sara Marsango, Graeme Milligan
摘要

G protein-coupled receptors, including the M3 muscarinic acetylcholine receptor, can form homo-oligomers. However, the basis of these interactions and the overall organizational structure of such oligomers are poorly understood. Combinations of site-directed mutagenesis and homogenous time-resolved fluorescence resonance energy transfer studies that assessed interactions between receptor protomers at the surface of transfected cells indicated important contributions of regions of transmembrane domains I, IV, V, VI, and VII as well as intracellular helix VIII to the overall organization. Molecular modeling studies based on both these results and an X-ray structure of the inactive state of the M3 receptor bound by the antagonist/inverse agonist tiotropium were then employed. The results could be accommodated fully by models in which a proportion of the cell surface M3 receptor population is a tetramer with rhombic, but not linear, orientation. This is consistent with previous studies based on spectrally resolved, multiphoton fluorescence resonance energy transfer. Modeling studies furthermore suggest an important role for molecules of cholesterol at the dimer + dimer interface of the tetramer, which is consistent with the presence of cholesterol at key locations in many G protein-coupled receptor crystal structures. Mutants that displayed disrupted quaternary organization were often poorly expressed and showed immature N-glycosylation. Sustained treatment of cells expressing such mutants with the muscarinic receptor inverse agonist atropine increased cellular levels and restored both cell surface delivery and quaternary organization to many of the mutants. These observations suggest that organization as a tetramer may occur before plasma membrane delivery and may be a key step in cellular quality control assessment.

材料
货号
品牌
产品描述

Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
3-吗啉丙磺酸, ≥99.5% (titration)
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
磷酸钾 一元, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
十二烷基β-D-麦芽糖苷, ≥98% (GC)
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, ≥98.0% (titration)
Sigma-Aldrich
3-吗啉丙磺酸, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
Sigma-Aldrich
甘油, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
磷酸钾 一元, for molecular biology, ≥98.0%
SAFC
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇
Sigma-Aldrich
3-吗啉丙磺酸, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
氯化钠, JIS special grade, ≥99.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
甘油, FCC, FG
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
磷酸钾 一元, ReagentPlus®
Sigma-Aldrich
氯化钠, SAJ first grade, ≥99.0%
Sigma-Aldrich
十二烷基β-D-麦芽糖苷, BioXtra, ≥98% (GC)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%