Passa al contenuto
Merck
  • Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

Applied and environmental microbiology (2014-09-28)
Pasquale Filannino, Marco Gobbetti, Maria De Angelis, Raffaella Di Cagno
ABSTRACT

The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Glicerolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Glicerolo, for molecular biology, ≥99.0%
Sigma-Aldrich
Glicerolo, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Glicerolo, 83.5-89.5% (T)
Sigma-Aldrich
Glicerolo, ≥99.5%
Sigma-Aldrich
Glicerolo, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glicerolo, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Glicerolo, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
p-Coumaric acid, ≥98.0% (HPLC)
USP
Glicerina, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
trans-Ferulic acid, 99%
Sigma-Aldrich
Glicerolo, FCC, FG
Sigma-Aldrich
Glicerolo, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Supelco
Glicerolo, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Glicerolo, BioXtra, ≥99% (GC)
Sigma-Aldrich
3-(4-Hydroxyphenyl)propionic acid, 98%
Sigma-Aldrich
trans-Ferulic acid, ≥99%
Sigma-Aldrich
Glicerolo, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Glicerolo, meets USP testing specifications
Supelco
Glicerolo, analytical standard
Sigma-Aldrich
2-Ethylphenol, 99%
Sigma-Aldrich
Glicerolo, tested according to Ph. Eur., anhydrous
Supelco
trans-Ferulic acid, matrix substance for MALDI-MS, ≥99.0% (HPLC)
Ferulic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Glicerolo, Vetec, reagent grade, 99%
Supelco
trans-p-Coumaric acid, analytical standard
Supelco
trans-Ferulic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland