Passa al contenuto
Merck
  • Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

International journal of pharmaceutics (2013-07-23)
Norman Chieng, Hjalte Trnka, Johan Boetker, Michael Pikal, Jukka Rantanen, Holger Grohganz
ABSTRACT

The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Alcol poli(vinilico), Mw 89,000-98,000, 99+% hydrolyzed
Sigma-Aldrich
Alcol poli(vinilico), Mw 146,000-186,000, 99+% hydrolyzed
Sigma-Aldrich
Destrano, Mr 450,000-650,000
Sigma-Aldrich
Polivinilpirrolidone, mol wt (number average molecular weight Mn 360kDa)
Sigma-Aldrich
Alcol poli(vinilico), Mw 9,000-10,000, 80% hydrolyzed
Sigma-Aldrich
Destrano, Mr ~70,000
Sigma-Aldrich
Destrano, Mr ~40,000
Sigma-Aldrich
Polivinilpirrolidone, average Mw ~1,300,000 by LS
Sigma-Aldrich
Alcol poli(vinilico), Mw 13,000-23,000, 87-89% hydrolyzed
Sigma-Aldrich
Polivinilpirrolidone, powder, average Mw ~55,000
Sigma-Aldrich
Polivinilpirrolidone, average mol wt 40,000
Sigma-Aldrich
Alcol poli(vinilico), Mw ~31,000
Sigma-Aldrich
Alcol poli(vinilico), Mw 31,000-50,000, 98-99% hydrolyzed
Sigma-Aldrich
Dextran from Leuconostoc mesenteroides, average mol wt 9,000-11,000
Sigma-Aldrich
Alcol poli(vinilico), Mw 85,000-124,000, 99+% hydrolyzed
Sigma-Aldrich
Dextran from Leuconostoc mesenteroides, average mol wt 1,500,000-2,800,000
Sigma-Aldrich
Alcol poli(vinilico), Fully hydrolyzed
Sigma-Aldrich
Polivinilpirrolidone, powder, average Mw ~29,000
Sigma-Aldrich
Dextran from Leuconostoc mesenteroides, average mol wt 60,000-76,000
Sigma-Aldrich
Polivinilpirrolidone, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Dextran from Leuconostoc mesenteroides, average mol wt 35,000-45,000
Sigma-Aldrich
Alcol poli(vinilico), Mw ~130,000
Sigma-Aldrich
Alcol poli(vinilico), average Mw 31,000-50,000, 87-89% hydrolyzed
Sigma-Aldrich
Alcol poli(vinilico), average Mw 85,000-124,000, 87-89% hydrolyzed
Sigma-Aldrich
Alcol poli(vinilico), average Mw 146,000-186,000, 87-89% hydrolyzed
Sigma-Aldrich
Alcol poli(vinilico), average Mw 13,000-23,000, 98% hydrolyzed
Sigma-Aldrich
Alcol poli(vinilico), 87-90% hydrolyzed, average mol wt 30,000-70,000
Sigma-Aldrich
Destrano, Mr ~6,000
Sigma-Aldrich
Polivinilpirrolidone, K 30
Sigma-Aldrich
Polivinilpirrolidone, average mol wt 10,000