- Inhibition of S-adenosylhomocysteine hydrolase decreases cell mobility and cell proliferation through cell cycle arrest.
Inhibition of S-adenosylhomocysteine hydrolase decreases cell mobility and cell proliferation through cell cycle arrest.
S-adenosylhomocysteine hydrolase (AHCY) hydrolyzes S-adenosylhomocysteine to adenosine and l-homocysteine, and it is already known that inhibition of AHCY decreased cell proliferation by G2/M arrest in MCF7 cells. However, the previous study has not indicated what mechanism the cell cycle arrest is induced by. In this study, we aimed to investigate the different cell cycle mechanisms in both p53 wild-typed MCF7 and p53 mutant-typed MCF7-ADR by suppressing AHCY. We extensively proved that AHCY knockdown has an anti-proliferative effect by using the WST-1 assay, BrdU assay, and cell cytometry analysis and an anti-invasive, migration effect by wound-healing assay and trans-well analysis. Our study showed that down-regulation of AHCY effectively suppressed cell proliferation by regulating the MEK/ERK signaling pathway and through cell cycle arrests. The cell cycle arrest occurred at the G2/M checkpoint by inhibiting degradation of cyclinB1 and phosphorylation of CDC2 in MCF7 cells and at the G1 phase by inhibiting cyclinD1 and CDK6 in MCF7-ADR cells. Finally, we determined that AHCY regulates the expression of ATM kinase that phosphorylates p53 and affects to arrest of G2/M phase in MCF7 cells. The findings of this study significantly suggest that AHCY is an important regulator of cell proliferation through different mechanism in between MCF7 and MCF7-ADR cells as p53 status.