Direkt zum Inhalt
Merck
  • Gas chromatography-mass spectrometry of the trimethylsilyl (oxime) ether/ester derivatives of cholic acids: their presence in the aquatic environment.

Gas chromatography-mass spectrometry of the trimethylsilyl (oxime) ether/ester derivatives of cholic acids: their presence in the aquatic environment.

Journal of chromatography. A (2008-10-14)
A Sebok, K Sezer, A Vasanits-Zsigrai, A Helenkár, Gy Záray, I Molnár-Perl
ZUSAMMENFASSUNG

This paper presents a derivatization, mass fragmentation study relating to the most common six cholic acids, such as cholic, lithocholic, chenodeoxycholic, ursodeoxycholic, 3-hydroxy,7-ketocholanic and dehydrocholic acids, identified and quantified as pollutants in the aquatic environment at the first time. Derivatizations have been performed with the two-step process (1: oximation, 2: silylation) varying the time and temperature of both reactions. Optimum responses have been obtained after 30 min oximation with hydroxylamine.HCl and 90 min silylation with hexamethyldisilazane and trifluoroacetic acid at 70 degrees C. Fragmentation patterns of the trimethylsilyl (oxime) ether/ester derivatives of all six cholic acids provided the theoretically expected, fully derivatized compounds. Reproducibility/linearity of derivatives calculated on the basis of the corresponding selective fragment ions, characterized by the relative standard deviation percentages of measurements, proved to be < or =4.9 (RSD%). The practical utility of the method was shown by the identification and quantification of cholic acids as pollutants in the aquatic environment. Subsequently to a solid phase extraction study varying the pH of extractions (pH 2, pH 4 and pH 7), applying the OASIS cartridges, it has been confirmed that the recoveries for all six cholic acids are acceptable, varying between 77% and 104%, and are independent on the pH. The total cholic acid content of a Hungarian wastewater plants' influent wastewater varied between 184 microg/L and 356 microg/L, while the Danube rivers' cholic acid content was 4.1 microg/L, only.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Lithium-bis-(trimethylsilyl)-amid -Lösung, 1.0 M in THF
Sigma-Aldrich
Hexamethyldisilazan, reagent grade, ≥99%
Sigma-Aldrich
Natrium-bis(trimethylsilyl)amid -Lösung, 1.0 M in THF
Sigma-Aldrich
Kalium-bis(trimethylsilyl)amid -Lösung, 1 M in THF
Sigma-Aldrich
Kalium-bis(trimethylsilyl)amid, 95%
Sigma-Aldrich
Hexamethyldisilazan, ReagentPlus®, 99.9%
Sigma-Aldrich
Lithium-bis-(trimethylsilyl)-amid, 97%
Sigma-Aldrich
Lithium-bis-(trimethylsilyl)-amid -Lösung, 1 M in toluene
Sigma-Aldrich
Natrium-bis(trimethylsilyl)amid, 95%
Sigma-Aldrich
Lithium-bis-(trimethylsilyl)-amid -Lösung, 1.5 M in THF
Sigma-Aldrich
Kalium-bis(trimethylsilyl)amid -Lösung, 0.5 M in toluene
Sigma-Aldrich
Lithium-bis-(trimethylsilyl)-amid -Lösung, 1.0 M in hexanes
Sigma-Aldrich
Natrium-bis(trimethylsilyl)amid -Lösung, 40% in THF
Supelco
Hexamethyldisilazan, for GC derivatization, LiChropur, ≥99.0% (GC)
Sigma-Aldrich
Hexamethyldisilazan, produced by Wacker Chemie AG, Burghausen, Germany, ≥97.0% (GC)
Sigma-Aldrich
Natrium-bis(trimethylsilyl)amid -Lösung, 0.6 M in toluene
Sigma-Aldrich
Kalium-bis(trimethylsilyl)amid -Lösung, 1.0 M in 2-methyltetrahydrofuran
Sigma-Aldrich
Lithium-bis-(trimethylsilyl)-amid -Lösung, 1 M in tert-butyl methyl ether
Sigma-Aldrich
Lithium-bis-(trimethylsilyl)-amid -Lösung, 0.5 M in 2-methyltetrahydrofuran