Accéder au contenu
MilliporeSigma
  • The utility of human fallopian tube mucosa as a novel source of multipotent stem cells for the treatment of autologous reproductive tract injury.

The utility of human fallopian tube mucosa as a novel source of multipotent stem cells for the treatment of autologous reproductive tract injury.

Stem cell research & therapy (2015-05-23)
Jiaojiao Wang, Yong Zhao, Xiaoyun Wu, Shande Yin, Yunhai Chuai, Aiming Wang
RÉSUMÉ

Fallopian tube, which is normally discarded in surgical procedures, has proven to be a source of mesenchymal stem cells (MSCs) with increasing evidence. However, fallopian tube mucosa, which can be acquired via non-invasive procedures, is a previously unknown source of MSCs. In the present study, we explored the existence of MSCs in the human fallopian tube mucosa and also compared multipotent stem cells derived from fallopian tubes and fallopian tube mucosa according to their biological characteristics and therapeutic potential for treatment of autologous reproductive tract injury. Cells isolated from human fallopian tubes and fallopian tube mucosa were expanded and characterised by flow cytometry. The proliferative capacity of both cell types was measured by performing colony-forming unit-fibroblast and Cell Counting Kit-8 assays. Both cell types underwent in vitro adipogenic, chondrogenic, and osteogenic differentiation. The expression of osteocyte-, adipocyte-, and chondrocyte-related genes in the differentiated cell lineages was assessed by reverse transcription-polymerase chain reaction. The secretion of growth factors and immunomodulatory cytokines by both cell types were measured by enzyme-linked immunosorbent assays. We found that MSCs existed in the fallopian tube mucosa. The comparison between human fallopian tube MSCs (hFTMSCs) and human fallopian tube mucosa MSCs (hFMMSCs) showed that hFTMSCs had a stronger proliferative capacity and shorter duplication time than hFMMSCs. Both cell types could be differentiated into adipocytes, osteoblasts, or chondrocytes in vitro. Real-time polymerase chain reaction analysis demonstrated that hFTMSCs displayed increased expression of osteogenic-specific genes compared with hFMMSCs, but the two types of cells showed no significant increase in the mRNA expression of adipogenic-specific or chondrogenic-specific genes. hFMMSCs and hFTMSCs robustly produced a variety of growth factors and immunomodulatory cytokines. Human fallopian tube mucosa is a novel source of multipotent cells. hFMMSCs demonstrated stronger proliferative capacity and superior secretion of growth factors and immunomodulatory cytokines than hFTMSCs, making the former a better source of stem cells for the treatment of autologous reproductive tract injury. Compared with fallopian tube, fallopian tube mucosa has more wide-ranging applications and can be used to carry out autologous transplantation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Dexaméthasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
3-Isobutyl-1-méthylxanthine, ≥99% (HPLC), powder
Sigma-Aldrich
L-acide ascorbique, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-acide ascorbique, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
3-Isobutyl-1-méthylxanthine, ≥99%, BioUltra
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-acide ascorbique, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Dexaméthasone, ≥98% (HPLC), powder
Sigma-Aldrich
L-acide ascorbique, reagent grade, crystalline
Sigma-Aldrich
Indomethacin, 98.5-100.5% (in accordance with EP)
SAFC
L-Glutamine
Sigma-Aldrich
L-acide ascorbique, reagent grade
Sigma-Aldrich
L-acide ascorbique, 99%
Sigma-Aldrich
L-acide ascorbique, meets USP testing specifications
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Dexaméthasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
L-acide ascorbique, FCC, FG
Sigma-Aldrich
L-acide ascorbique, ACS reagent, ≥99%
Sigma-Aldrich
L-acide ascorbique, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Indomethacin, meets USP testing specifications
Sigma-Aldrich
(Tyr[SO3H]27)Cholecystokinin fragment 26-33 Amide, ≥97% (HPLC), powder
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-acide ascorbique, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Dexaméthasone, meets USP testing specifications
Sigma-Aldrich
L-acide ascorbique, puriss. p.a., ≥99.0% (RT)