Accéder au contenu
MilliporeSigma

Investigations on the transfer of porphyrin from o/w emulsion droplets to liposomes with two different methods.

Drug development and industrial pharmacy (2013-10-30)
Mohamed Dawoud
RÉSUMÉ

Due to their small particle size, colloidal fat emulsions are suitable for intravenous administration. In order to obtain information on their potential in vivo performance, it is important to find a simple and effective in vitro assay to evaluate the drug release behavior of such particles. Two in vitro methods were studied to measure the transfer of a lipophilic model drug from colloidal o/w emulsion droplets (donor) to liposomes (acceptor), which serve as model membranes mimicking cell membranes in the body. In the first method (column method) the acceptor particles were neutral unilamellar vesicles. In the second method (MLV method), multilamellar vesicles (MLV) were used as acceptor. The donor nanoemulsions were prepared by high pressure homogenization. Z-average particle size, polydispersity index and zeta potential were determined. The transfer of porphyrin was moderate to the acceptor MLV and rapid to the acceptor unilamellar vesicles. The amount of transferred porphyrin at the end of the experiment depended on the transfer method and the donor/acceptor ratio. With both acceptors the transfer of porphyrin stopped at a concentration lower than the theoretical equilibrium values. Many factors such as acceptor particle size and donor to acceptor lipid molar ratio affect the drug transfer from the donor particles to the different acceptors. Both methods seem to be suitable to study the drug transfer from such colloidal emulsion and the use of lipophilic acceptor particles is a better approach to the conditions in blood.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Glycérol, ACS reagent, ≥99.5%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Glycérol, for molecular biology, ≥99.0%
Sigma-Aldrich
Chloroforme, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Glycérol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Acide phosphorique, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Chloroforme, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Chloroforme, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Chloroforme, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Cholestérol, Sigma Grade, ≥99%
Sigma-Aldrich
Acide phosphorique, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Acide phosphorique, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
2-Propanol, meets USP testing specifications
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%