Pular para o conteúdo
Merck
Todas as fotos(2)

Documentos Principais

900628

Sigma-Aldrich

Gelatin methacryloyl

gel strength 90-110 g Bloom, degree of substitution 60%

Sinônimo(s):

GelMA, Gelatin methacrylamide, Gelatin methacrylate, GelMa, Gelatin Methacrylate

Faça loginpara ver os preços organizacionais e de contrato

Selecione um tamanho

1 G
R$ 778,00

R$ 778,00


Check Cart for Availability

Solicite uma grande encomenda

Selecione um tamanho

Alterar visualização
1 G
R$ 778,00

About This Item

Fórmula linear:
(C40H59N11O13)n
Código UNSPSC:
12352202
NACRES:
NA.23

R$ 778,00


Check Cart for Availability

Solicite uma grande encomenda

Nível de qualidade

Formulário

solid

temperatura de armazenamento

2-8°C

Procurando produtos similares? Visita Guia de comparação de produtos

Aplicação

Gelatin methacrylate can be used to form cross-linked hydrogels for tissue engineering[1] and 3D printings.[2][3][4] It has been used for endothelial cell morphogenesis,[5] cardiomyocytes,[6] epidermal tissue,[7] injectable tissue constructs,[8] bone differentiation,[9] and cartilage regeneration.[10] Gelatin-methacrylate has been explored in drug delivery applications in the form of microspheres[11] and hydrogels.[12]

Código de classe de armazenamento

11 - Combustible Solids

Classe de risco de água (WGK)

WGK 3

Ponto de fulgor (°F)

Not applicable

Ponto de fulgor (°C)

Not applicable


Escolha uma das versões mais recentes:

Certificados de análise (COA)

Lot/Batch Number

Não está vendo a versão correta?

Se precisar de uma versão específica, você pode procurar um certificado específico pelo número do lote ou da remessa.

Já possui este produto?

Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.

Visite a Biblioteca de Documentos

Os clientes também visualizaram

Xin Zhao et al.
Advanced healthcare materials, 5(1), 108-118 (2015-04-17)
Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In
Kelly M C Tsang et al.
Advanced functional materials, 25(6), 977-986 (2015-09-04)
Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein-based photodegradable hydrogels
Anh H Nguyen et al.
Acta biomaterialia, 13, 101-110 (2014-12-03)
Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as
Jason W Nichol et al.
Biomaterials, 31(21), 5536-5544 (2010-04-27)
The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials
Chaenyung Cha et al.
Biomacromolecules, 15(1), 283-290 (2013-12-19)
Microfabrication technology provides a highly versatile platform for engineering hydrogels used in biomedical applications with high-resolution control and injectability. Herein, we present a strategy of microfluidics-assisted fabrication photo-cross-linkable gelatin microgels, coupled with providing protective silica hydrogel layer on the microgel

Artigos

Discussion of synthetic modifications to gelatin, improving the three-dimensional (3D) print resolution, and resulting material properties.

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

Protocolos

Frequently asked questions (FAQs) for KAPA SYBR® FAST One-Step qRT-PCR Kits.

Questions

Reviews

No rating value

Active Filters

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica