跳轉至內容
Merck
首頁代謝組學研究木瓜蛋白酶、半胱氨酸蛋白酶、特性與產品

木瓜蛋白酶、半胱氨酸蛋白酶、特性與產品

E.C. 3.4.22.2

木瓜樹 (Carica papaya) 與熱帶木瓜果實,透過樹葉顯示藍天與雲朵。木瓜蛋白酶是從木瓜乳汁中分離出來的。

木瓜 (Carica papaya)

 

物理性质和动力学

木瓜蛋白酶是肽酶 C1 家族的半胱氨酸蛋白酶。木瓜蛋白酶由一條多肽鏈組成,鏈上有三個二硫橋和一個酶活性所必需的巯基。 

分子量:23,406 Da(氨基酸序列)16
活性的最佳 pH 值:6.0-7.0
活性最適溫度:65 °C22
pI:8.75 17; 9.55 18 光譜特性:
λmax:278 nm 19
消光係數, E1% = 25 19
消光係數, EmM = 57.6 (at 280 nm) 20

單位定義:在 pH 6.2、25 °C 的條件下,一個單位每分鐘會水解 1.0 µmole 的 N-α-苯甲酰基-L-精氨酸乙酯 (BAEE)。

木瓜蛋白酶的結構顯示末端的小訊號肽,接著是較大的活化肽,然後是各種活性位點。活性位點周圍存在二硫化物。

圖 1.木瓜蛋白酶的結構。

特異性

木瓜蛋白酶會比胰蛋白酶更廣泛地消化大部分蛋白質底物。木瓜蛋白酶具有廣泛的特異性,可以裂解基本氨基酸、亮氨酸或甘氨酸的肽鍵。它也能水解酯類和醯胺類。木瓜蛋白酶偏好 P2 位上帶有大型疏水側鏈的胺基酸。它不接受 P1' 位置上的 Val。1

應用

典型的胃蛋白酶和木瓜蛋白酶裂解免疫球蛋白 G 抗體。一般抗體在左側,箭頭顯示胃蛋白酶在二硫鍵鉸鏈區域上方裂解為 F(ab)2 片段和 Fc 片段。另一個箭頭顯示木瓜蛋白酶在鉸鏈區域下方裂解,將抗體分成 Fab 片段和 Fc 片段。

圖 2.表示胃蛋白酶和木瓜蛋白酶的裂解。

溶解性和溶液穩定性

蛋白胨可溶於 10 mg/mL 的水。使用前,通常會立即將該酵素稀釋在含有 ~5 mM L-半胱氨酸的緩衝液中。活化/穩定劑包括 EDTA、半胱氨酸和二巯基丙醇。21

雖然木瓜蛋白酶溶液具有良好的溫度穩定性,但溶液的穩定性取決於 pH 值。木瓜蛋白酶溶液在酸性條件下不穩定,即 pH 值低於 2.8 時,活性會顯著降低。對於溶液中的活性酵素,其活性每天大約會損失 1-2%,這可能是自溶和/或氧化的結果。

在分離過程中得到的一種常見的木瓜蛋白酶非活性形式是蛋白質活性位點巯基與游離半胱氨酸之間形成的混合二硫化物。23

木瓜蛋白酶溶液對幾種變性劑都很穩定,即、在 70% 甲醇和 8 M 尿素溶液中重結晶後,仍可維持全部活性。然而,當木瓜蛋白酶暴露於 10% 三氯醋酸或 6 M 鹽酸胍時,其活性會顯著降低。

相關產品

木瓜蛋白酶
Loading
抑制劑
Loading
基板
Loading

參考資料

1.
GP Moss. [Internet]. EC 3.4.22.2: International Union of Biochemistry and Molecular Biology (IUBMB).[updated 05 Jun 2020; cited 17 Jul 2020]. Available from: https://www.qmul.ac.uk/sbcs/iubmb/enzyme/EC3/4/22/2
2.
Kinoshita K, Sato K, Hori M, Ozaki H, Karaki H. 2003. Decrease in activity of smooth muscle L-type Ca2+ channels and its reversal by NF-?B inhibitors in Crohn's colitis model. American Journal of Physiology-Gastrointestinal and Liver Physiology. 285(3):G483-G493. https://doi.org/10.1152/ajpgi.00038.2003
3.
Driska SP, Laudadio RE, Wolfson MR, Shaffer TH. 1999. A method for isolating adult and neonatal airway smooth muscle cells and measuring shortening velocity. Journal of Applied Physiology. 86(1):427-435. https://doi.org/10.1152/jappl.1999.86.1.427
4.
HASEGAWA M, KOBAYASHI M, OYAMADA H, KAMISHIMA T, YOSHIDA C, OHATA H, MARUYAMA I, MOMOSE K, GOMI Y. 1987. Studies on isolated smooth muscle cells. IX Application of papain for isolation of single smooth muscle cells from guinea-pig taenia coli.. Jpn. J. Smooth Muscle Res.. 23(1):35-46. https://doi.org/10.1540/jsmr1965.23.35
5.
Margossian SS, Lowey S. 1973. Substructure of the myosin molecule. Journal of Molecular Biology. 74(3):301-311. https://doi.org/10.1016/0022-2836(73)90375-6
6.
Margossian SS, Lowey S. 1973. Substructure of the myosin molecule. Journal of Molecular Biology. 74(3):313-330. https://doi.org/10.1016/0022-2836(73)90376-8
7.
Shiozaki K, Yanagida M. 1991. A functional 125-kDa core polypeptide of fission yeast DNA topoisomerase II.. Mol. Cell. Biol.. 11(12):6093-6102. https://doi.org/10.1128/mcb.11.12.6093
8.
Kyer CI. 1995. Information technology law: What does the future hold?. Computer Law & Security Review. 11(3):140-142. https://doi.org/10.1016/s0267-3649(00)80035-7
9.
?-Nitro-?-amino acids as latent ?,?-dehydro-?-amino acid residues in solid-phase peptide synthesis. 2004(10):101. https://doi.org/10.3998/ark.5550190.0005.a11
10.
Rajesh M, Kapila S, Nam P, Forciniti D, Lorbert S, Schasteen C. 2003. Enzymatic Synthesis and Characterization ofl-Methionine and 2-Hydroxy-4-(methylthio)butanoic Acid (HMB) Co-oligomers. J. Agric. Food Chem.. 51(9):2461-2467. https://doi.org/10.1021/jf026093g
11.
Fukuoka T, Tachibana Y, Tonami H, Uyama H, Kobayashi S. 2002. Enzymatic Polymerization of Tyrosine Derivatives. Peroxidase- and Protease-Catalyzed Synthesis of Poly(tyrosine)s with Different Structures. Biomacromolecules. 3(4):768-774. https://doi.org/10.1021/bm020016c
12.
Burton SG, Cowan DA, Woodley JM. 2002. The search for the ideal biocatalyst. Nat Biotechnol. 20(1):37-45. https://doi.org/10.1038/nbt0102-37
13.
Greenfield E. 2014. Antibodies: A Laboratory Manual. 2. New York: Cold Spring Harbor Laboratory Press.
14.
NEWKIRK MM, EDMUNDSON A, WISTAR R, KLAPPER DG, CAPRA JD. 1987. A New Protocol to Digest Human IgM with Papain that Results in Homogeneous Fab Preparations that Can Be Routinely Crystallized. Hybridoma. 6(5):453-460. https://doi.org/10.1089/hyb.1987.6.453
15.
Mitchel R, Chaiken I, Smith E. 1970. The Complete Amino Acid Sequence of Papain. J. Biol. Chem. 2453485-3492.
16.
Smith EL, Kimmel JR, Brown DM. 1954. CRYSTALLINE PAPAIN: II. PHYSICAL STUDIES; THE MERCURY COMPLEX. J. Biol. Chem.. 207533-549.
17.
Sluyterman L, de Graaf M. 1972. The effect of salts upon the pH dependence of the activity of papain and succinyl-papain. Biochimica et Biophysica Acta (BBA) - Enzymology. 258(2):554-561. https://doi.org/10.1016/0005-2744(72)90247-1
18.
Glazer AN, Smith EL. 1961. Phenolic Hydroxyl Ionization in Papain. J. Biol. Chem.. 2362948-51.
19.
Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci.. 4(11):2411-2423. https://doi.org/10.1002/pro.5560041120
20.
Arnon R. 1970. [14] Papain.226-244. https://doi.org/10.1016/0076-6879(70)19017-3
21.
Kilara A, Shahani KM, Wagner FW. 1977. Preparation and properties of immobilized papain and lipase. Biotechnol. Bioeng.. 19(11):1703-1714. https://doi.org/10.1002/bit.260191109
22.
Klein IB, Kirsch JF. 1969. The Activation of Papain and the Inhibition of the Active Enzyme by Carbonyl Reagents. J. Biol. Chem.. 2445928-5935.
登入以繼續

若要繼續閱讀,請登入或建立帳戶。

還沒有帳戶?