跳轉至內容
Merck
  • Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles.

Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles.

Radiation research (2014-11-18)
V N Marty, R Vlkolinsky, N Minassian, T Cohen, G A Nelson, I Spigelman
摘要

The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
Protease Inhibitor Cocktail, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
铁, ≥99%, reduced, powder (fine)
Sigma-Aldrich
γ-氨基丁酸, ≥99%
Sigma-Aldrich
硅, powder, −325 mesh, 99% trace metals basis
Sigma-Aldrich
羰基铁, ≥97% Fe basis
Sigma-Aldrich
硅, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
铁, puriss. p.a., carbonyl-Iron powder, low in magnesium and manganese compounds, ≥99.5% (RT)
Sigma-Aldrich
铁, powder, −325 mesh, 97%
Sigma-Aldrich
铁, granular, 10-40 mesh, >99.99% trace metals basis
Sigma-Aldrich
硅, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
硅, nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis
Sigma-Aldrich
铁, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
γ-氨基丁酸, BioXtra, ≥99%
Sigma-Aldrich
硅, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
铁, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, chips, 99.98% trace metals basis
Sigma-Aldrich
铁, wire, diam. 1.0 mm, ≥99.9% trace metals basis
Sigma-Aldrich
硅, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
硅, wafer (single side polished), <111>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
铁, nanopowder, 35-45 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
硅, pieces, 99.95% trace metals basis
Sigma-Aldrich
硅, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
硅, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
硅, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
铁, foil, thickness 0.25 mm, ≥99.99% trace metals basis
Sigma-Aldrich
硅, wafer, <111>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.3 mm
Sigma-Aldrich
硅, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
硅, wafer (single side polished), <111>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Supelco
γ-氨基丁酸, analytical standard
铁, IRMM®, certified reference material, 0.5 mm wire