跳轉至內容
Merck
  • E-cadherin is required for metastasis in multiple models of breast cancer.

E-cadherin is required for metastasis in multiple models of breast cancer.

Nature (2019-09-06)
Veena Padmanaban, Ilona Krol, Yasir Suhail, Barbara M Szczerba, Nicola Aceto, Joel S Bader, Andrew J Ewald
摘要

Metastasis is the major driver of death in patients with cancer. Invasion of surrounding tissues and metastasis have been proposed to initiate following loss of the intercellular adhesion protein, E-cadherin1,2, on the basis of inverse correlations between in vitro migration and E-cadherin levels3. However, this hypothesis is inconsistent with the observation that most breast cancers are invasive ductal carcinomas and express E-cadherin in primary tumours and metastases4. To resolve this discrepancy, we tested the genetic requirement for E-cadherin in metastasis using mouse and human models of both luminal and basal invasive ductal carcinomas. Here we show that E-cadherin promotes metastasis in diverse models of invasive ductal carcinomas. While loss of E-cadherin increased invasion, it also reduced cancer cell proliferation and survival, circulating tumour cell number, seeding of cancer cells in distant organs and metastasis outgrowth. Transcriptionally, loss of E-cadherin was associated with upregulation of genes involved in transforming growth factor-β (TGFβ), reactive oxygen species and apoptosis signalling pathways. At the cellular level, disseminating E-cadherin-negative cells exhibited nuclear enrichment of SMAD2/3, oxidative stress and increased apoptosis. Colony formation of E-cadherin-negative cells was rescued by inhibition of TGFβ-receptor signalling, reactive oxygen accumulation or apoptosis. Our results reveal that E-cadherin acts as a survival factor in invasive ductal carcinomas during the detachment, systemic dissemination and seeding phases of metastasis by limiting reactive oxygen-mediated apoptosis. Identifying molecular strategies to inhibit E-cadherin-mediated survival in metastatic breast cancer cells may have potential as a therapeutic approach for breast cancer.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
泰莫西芬, ≥99%
Sigma-Aldrich
胰岛素 溶液 人, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
青链霉素, Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
白蛋白 溶液 来源于牛血清, 30% in DPBS, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
胎牛血清, USDA approved, sterile-filtered, suitable for cell culture
Sigma-Aldrich
霍乱毒素 来源于霍乱弧菌, ≥90% (SDS-PAGE), lyophilized powder
Sigma-Aldrich
(Z)-4-羟三苯氧胺, ≥98% Z isomer
Sigma-Aldrich
杜氏改良 Eagle 培养基 - 高葡萄糖, With 4500 mg/L glucose, sodium pyruvate, and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
重组人表皮细胞生长因子, EGF, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-15, ascites fluid
Sigma-Aldrich
hBFGF, FGF-Basic, recombinant, expressed in E. coli, suitable for cell culture
Sigma-Aldrich
胶原酶 来源于溶组织梭菌, suitable for release of rat epididymal adipocytes and hepatocytes (for methodology see Type II and Type IV), Type VIII, 0.5-5.0 FALGPA units/mg solid, ≥125 CDU/mg solid
Sigma-Aldrich
脱氧核糖核酸酶 I 来源于牛胰腺, Standardized vial containing 2,000 Kunitz units of DNase I (D4527), vial of ≥0.25 mg total protein
Sigma-Aldrich
氢化可的松, ≥98% (HPLC)
Sigma-Aldrich
N-乙酰基-L-半胱氨酸, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
Anti-Actin, N-terminal antibody produced in rabbit, ~0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
替罗非班, ≥98.5% (HPLC)
Supelco
布比卡因 盐酸盐, analytical standard, for drug analysis