跳轉至內容
Merck
全部照片(1)

重要文件

935433

Sigma-Aldrich

Heparin methacrylate (HepMA)

同義詞:

3D bioprinting, Bioprinting, HepMA, Heparin, Heparin methacrylate, Hydrogel

登入查看組織和合約定價


About This Item

分類程式碼代碼:
12162002
NACRES:
NA.21
暫時無法取得訂價和供貨情況

描述

Degree of functionalization: 10-30% methacrylation

品質等級

形狀

powder or chunks (or fibers)

顏色

white to off-white

儲存溫度

2-8°C

一般說明

Heparin methacrylate (HepMa) is a functionalized natural polymer that can be used in 3D bioprinting and tissue engineering applications.

Heparin is a naturally occurring linear biopolymer and highly sulfated glycosaminoglycan (GAG). Research has demonstrated that heparin can modulate binding extracellular matrix proteins and sequester growth factors and cytokines, making them useful in 3D applications. The methacrylate-functionalization of heparin allows thermal or photochemical crosslinking via covalent conjugation. Heparins exhibit high anionic charge densities to promote large swelling ratios in water.

應用

Heparin based hydrogels are widely used in tissue engineering, 3D bioprinting, and drug delivery applications.

特點和優勢

  • Batch control offers reproducible models for preclinical toxicology testing and drug screening
  • Extended shelf-life & stability

象形圖

Exclamation mark

訊號詞

Warning

危險聲明

危險分類

Acute Tox. 4 Oral

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Anastasia Nilasaroya et al.
Biomaterials, 29(35), 4658-4664 (2008-09-19)
Synthetic scaffolds show great promise for use in tissue engineering due to their ability to mimic some aspects of the extracellular matrix, however, their use has been hindered by the lack of inherent recognition sites that are required for protein
Hangjun Ding et al.
ACS nano, 8(5), 4348-4357 (2014-04-18)
The emergence of flexible and stretchable electronic components expands the range of applications of electronic devices. Flexible devices are ideally suited for electronic biointerfaces because of mechanically permissive structures that conform to curvilinear structures found in native tissue. Most electronic
Danielle S W Benoit et al.
Biomaterials, 28(1), 66-77 (2006-09-12)
Poly(ethylene glycol) (PEG) hydrogels functionalized with heparin were utilized as a three-dimensional culture system for human mesenchymal stem cells (hMSCs). Heparin-functionalized hydrogels supported hMSC viability, as quantified through live/dead imaging, and induced osteogenic differentiation, as measured by increased alkaline phosphatase

Questions

Reviews

No rating value

Active Filters

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務