コンテンツへスキップ
Merck
ホーム太陽光発電・太陽電池高純度Spiro-MeOTAD (Spiro-OMeTAD)

高純度Spiro-MeOTAD (Spiro-OMeTAD)

SHT-263 Solarpur® 高品位ペロブスカイト太陽電池用ホール輸送材料

Spiro-MeOTAD(Spiro-OMeTAD)は、エネルギー準位がペロブスカイト化合物との組み合わせに最適であり、非晶質性、高い融点およびガラス転移温度、良好な成膜性や高い溶解性、導電性など、複数の要因が組み合わさって、ペロブスカイト太陽電池に最も早くから採用されている低分子ホール輸送材料(HTM:hole transport material)の一つです1-3。最近では、spiro-MeOTAD HTMを用いたペロブスカイト太陽電池は、25%を超える変換効率を示します4。また、新しく開発されたHTMとの比較のためのリファレンス材料としてもよく使用されています。

メルクのSpiro-MeOTAD製品「SHT-263 Solarpur®」は高品質材料として広く知られており、ペロブスカイト太陽電池の主要な研究成果に多数の実績があります5-15。製造ロット間の一貫性が高いため、安定した電池性能が得られます。また、研究用途のみならず、量産化に向けたバルク大容量でのご提供も可能です。

Spiro-MeOTADの構造式

Spiro-MeOTAD(902500)の構造式

代表的な性質※1

※1 代表的な値です。製品規格はCoAをご覧ください。
※2 HOMOおよびLUMOのエネルギー準位は、サイクリックボルタンメトリーによりferrocene(Fc) / ferrocenium(Fc+)酸化還元対(-4.80 eV vs. 真空準位)を基準にして算出。エネルギー準位については文献1, 17もご参考ください。

SHT-263 Solarpur®を用いた太陽電池の典型的な性能

Spiro-MeOTAD製品
Loading
その他ホール輸送材料製品
Loading
ドーパント製品
Loading

References

1.
Hawash Z, Ono LK, Qi Y. 2018. Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells. Adv. Mater. Interfaces. 5(1):1700623. https://doi.org/10.1002/admi.201700623
2.
Rombach FM, Haque SA, Macdonald TJ. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci.. 14(10):5161-5190. https://doi.org/10.1039/d1ee02095a
3.
Calió L, Kazim S, Grätzel M, Ahmad S. 2016. Hole-Transport Materials for Perovskite Solar Cells. Angew. Chem. Int. Ed.. 55(47):14522-14545. https://doi.org/10.1002/anie.201601757
4.
Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope MA, Eickemeyer FT, Kim M, et al. 2021. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature. 592(7854):381-385. https://doi.org/10.1038/s41586-021-03406-5
5.
Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. 2012. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science. 338(6107):643-647. https://doi.org/10.1126/science.1228604
6.
Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 499(7458):316-319. https://doi.org/10.1038/nature12340
7.
Liu M, Johnston MB, Snaith HJ. 2013. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501(7467):395-398. https://doi.org/10.1038/nature12509
8.
Liu D, Kelly TL. 2014. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8(2):133-138. https://doi.org/10.1038/nphoton.2013.342
9.
Ahn N, Son D, Jang I, Kang SM, Choi M, Park N. 2015. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc.. 137(27):8696-8699. https://doi.org/10.1021/jacs.5b04930
10.
Saliba M, Matsui T, Domanski K, Seo J, Ummadisingu A, Zakeeruddin SM, Correa-Baena J, Tress WR, Abate A, Hagfeldt A, et al. 2016. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 354(6309):206-209. https://doi.org/10.1126/science.aah5557
11.
Tang Z, Bessho T, Awai F, Kinoshita T, Maitani MM, Jono R, Murakami TN, Wang H, Kubo T, Uchida S, et al. 2017. Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci Rep. 7(1): https://doi.org/10.1038/s41598-017-12436-x
12.
Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W. 2018. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat Energy. 3(1):61-67. https://doi.org/10.1038/s41560-017-0060-5
13.
Jiang Y, Qiu L, Juarez-Perez EJ, Ono LK, Hu Z, Liu Z, Wu Z, Meng L, Wang Q, Qi Y. 2019. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat Energy. 4(7):585-593. https://doi.org/10.1038/s41560-019-0406-2
14.
Chen J, Zhao X, Kim S, Park N. 2019. Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Adv. Mater.. 31(39):1902902. https://doi.org/10.1002/adma.201902902
15.
Seo J, Akin S, Zalibera M, Preciado MAR, Kim H, Zakeeruddin SM, Milić JV, Grätzel M. 2021. Dopant Engineering for Spiro-OMeTAD Hole-Transporting Materials towards Efficient Perovskite Solar Cells. Adv. Funct. Mater.. 31(45):2102124. https://doi.org/10.1002/adfm.202102124
16.
Poplavskyy D, Nelson J. 2003. Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. Journal of Applied Physics. 93(1):341-346. https://doi.org/10.1063/1.1525866
17.
Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A. 2014. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci.. 7(4):1377. https://doi.org/10.1039/c4ee00168k
ログインして続行

続きを確認するには、ログインするか、新規登録が必要です。

アカウントをお持ちではありませんか?