Kir4.1/KCNJ10 (potassium voltage-gated channel subfamily J member 10) is an inwardly rectifying potassium (K+) channel. This gene is expressed in the brain, inner ear and kidney. KCNJ10 gene is mapped to human chromosome 1q23.
This gene encodes a member of the inward rectifier-type potassium channel family, characterized by having a greater tendency to allow potassium to flow into, rather than out of, a cell. The encoded protein may form a heterodimer with another potassium channel protein and may be responsible for the potassium buffering action of glial cells in the brain. Mutations in this gene have been associated with seizure susceptibility of common idiopathic generalized epilepsy syndromes. (provided by RefSeq)
免疫原
KCNJ10 (NP_002232, 276 a.a. ~ 379 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa.
Monoclonal Anti-KCNJ10 antibody has been used in immunohistochemistry.
生物化学的/生理学的作用
Kir4.1/KCNJ10 (potassium voltage-gated channel subfamily J member 10) helps to regulate the basolateral K+ conductance in the DCT (distal convoluted tubule). It participates in the K+ spatial buffering process, that helps to maintain the resting membrane potential of neurons. Kir4.1 is essential for producing the endocochlear potential of intermediate cells and for retaining high K+ content of the endolymph in ear. In the eye, Kir4.1 plays a vital role in the modulation of the extracellular K+ level and in controlling the healing process of cornea epithelial cells. Mutations in KCNJ10 results in SeSAME (seizures, sensorineural deafness, ataxia, mental retardation and electrolyte imbalance).
物理的形状
Solution in phosphate buffered saline, pH 7.4
法的情報
GenBank is a registered trademark of United States Department of Health and Human Services
免責事項
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
International journal of molecular sciences, 20(5) (2019-03-01)
The dysfunction of astrocytic inwardly rectifying potassium (Kir) 4.1 channels, which mediate the spatial potassium-buffering function of astrocytes, is known to be involved in the development of epilepsy. Here, we analyzed the Kir4.1 expressional changes in Leucine-Rich Glioma-Inactivated 1 (Lgi1)
The expression, regulation, and function of Kir4.1 (Kcnj10) in the mammalian kidney
Su XT and Wang WH
American Journal of Physiology: Renal Physiology, 311(1), F12-F15 (2016)
Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10
Scholl UI, et al.
Proceedings of the National Academy of Sciences of the USA, 106(14), 5842-5847 (2009)
Proper function of the retina depends heavily on a specialized form of retinal glia called Müller cells. These cells carry out important homeostatic functions that are contingent on their polarized nature. Specifically, the Müller cell endfeet that contact retinal microvessels