CR6-interacting factor 1 (Crif1) is a mitochondrial protein which is required for the assembly of oxidative phosphorylation (OXPHOS) complexes. Our bioinformatics analysis based on Cancer Genome Atlas (TCGA) database revealed an aberrant overexpression of CRIF1 in hepatocellular carcinoma (HCC). However
Mitochondrial dysfunction has emerged as a major contributing factor to endothelial dysfunction and vascular disease, but the key mechanisms underlying mitochondrial dysfunction-induced endothelial dysfunction remain to be elucidated. In this study, we aim at determining whether mitochondrial dysfunction in endothelial
Biochemical and biophysical research communications, 522(4), 869-875 (2019-12-07)
Inhibition of mitochondrial protein CR6 interacting factor 1 (CRIF1) disturbs mitochondrial function, depolarizes membrane potential, and increases reactive oxygen species (ROS) levels in endothelial cells. Impaired mitochondrial function accompanied by oxidative damage is a major contributor to the initiation of
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 40(7), 1546-1561 (2020-01-29)
Cerebral endothelial cells (ECs) require junctional proteins to maintain blood-brain barrier (BBB) integrity, restricting toxic substances and controlling peripheral immune cells with a higher concentration of mitochondria than ECs of peripheral capillaries. The mechanism underlying BBB disruption by defective mitochondrial
CR6-interacting factor 1 (CRIF1) regulates cell cycle progression and the DNA damage response. Here, we show that CRIF1 expression is decreased in hepatocellular carcinoma (HCC) tissues and positively correlates with patients' survival.