コンテンツへスキップ
Merck

400939

Sigma-Aldrich

Lithium titanate

greener alternative

−80 mesh

別名:

LTO

ログイン組織・契約価格を表示する


About This Item

化学式:
Li2TiO3
CAS番号:
分子量:
109.75
EC Number:
MDL番号:
UNSPSCコード:
12352300
PubChem Substance ID:
NACRES:
NA.23

形状

powder

環境により配慮した代替製品の特徴

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

粒径

−80 mesh

環境により配慮した代替製品カテゴリ

SMILES記法

[Li+].[Li+].[O-][Ti]([O-])=O

InChI

1S/2Li.3O.Ti/q2*+1;;2*-1;

InChI Key

GLUCAHCCJMJHGV-UHFFFAOYSA-N

詳細

Lithium titanate (LTO) (-80 mesh) is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

アプリケーション

Lithium titanate (LTO) can be used as an anode material, which shows an ion conductivity of 10−3 Scm−1 at room temperature. It can also be used as an alternative to conventional graphite materials. LTO can further be used in the fabrication of high-performance lithium-ion batteries for electric vehicles (EVs).

保管分類コード

11 - Combustible Solids

WGK

WGK 3

引火点(°F)

Not applicable

引火点(℃)

Not applicable

個人用保護具 (PPE)

Eyeshields, Gloves, type N95 (US)


適用法令

試験研究用途を考慮した関連法令を主に挙げております。化学物質以外については、一部の情報のみ提供しています。 製品を安全かつ合法的に使用することは、使用者の義務です。最新情報により修正される場合があります。WEBの反映には時間を要することがあるため、適宜SDSをご参照ください。

Jan Code

400939-VAR:
400939-100G:
400939-BULK:
400939-500G:


試験成績書(COA)

製品のロット番号・バッチ番号を入力して、試験成績書(COA) を検索できます。ロット番号・バッチ番号は、製品ラベルに「Lot」または「Batch」に続いて記載されています。

以前この製品を購入いただいたことがある場合

文書ライブラリで、最近購入した製品の文書を検索できます。

文書ライブラリにアクセスする

Ling Ding et al.
ACS applied materials & interfaces (2020-11-18)
Electrode materials with a high performance and stable cycling have been commercialized, but the utilization of state-of-the-art Li-ion batteries in high-current rate applications is restricted because of limitations in other battery components, in particular, the lack of an efficient binder.
Woo Jin Hyun et al.
ACS nano, 13(8), 9664-9672 (2019-07-19)
Solid-state electrolytes based on ionic liquids and a gelling matrix are promising for rechargeable lithium-ion batteries due to their safety under diverse operating conditions, favorable electrochemical and thermal properties, and wide processing compatibility. However, gel electrolytes also suffer from low
Desiree Camara Miraldo et al.
Motor control, 1-13 (2020-08-19)
This study describes an open data set of inertial, magnetic, foot-ground contact, and electromyographic signals from wearable sensors during walking at different speeds. These data were acquired from 22 healthy adults using wearable sensors and walking at self-selected comfortable, fast
Arailym Nurpeissova et al.
Nanomaterials (Basel, Switzerland), 10(10) (2020-10-15)
Low dimensional Si-based materials are very promising anode candidates for the next-generation lithium-ion batteries. However, to satisfy the ever-increasing demand in more powerful energy storage devices, electrodes based on Si materials should display high-power accompanied with low volume change upon
Sungmook Jung et al.
Scientific reports, 5, 17081-17081 (2015-11-26)
Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the

資料

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

ナノ材料電極の実装によって、リチウムイオン電池のサイクル寿命を犠牲にすることなく、求められる出力レベルで高い放電容量を持つ電池の実現が期待されます。

HEVs address rising fuel costs and emissions concerns, utilizing battery packs alongside internal combustion engines for enhanced performance.

米国エネルギー省は、米国先進バッテリーコンソーシアム(USABC)と協力してリチウム二次電池技術を開発しており、自動車用バッテリーの性能、寿命、および事故防止・誤用対策に関して大きな改善が得られています。

すべて表示

ライフサイエンス、有機合成、材料科学、クロマトグラフィー、分析など、あらゆる分野の研究に経験のあるメンバーがおります。.

製品に関するお問い合わせはこちら(テクニカルサービス)