Passa al contenuto
Merck

Self-adhesive resin cements: adhesive performance to indirect restorative ceramics.

The journal of adhesive dentistry (2014-12-18)
José Zorzin, Renan Belli, Andrea Wagner, Anselm Petschelt, Ulrich Lohbauer
ABSTRACT

To evaluate the bonding performance of self-adhesive resin cements to zirconia and lithium disilicate in self- and dual-curing modes before and after thermocycling. Rectangular bars (3 mm high, 3 mm wide, 9 mm long) were manufactured from zirconia (Vita In-Ceram YZ for inLab, VITA) and lithium disilicate blocks (IPS e.max Press, Ivoclar Vivadent) (n=240 per material). Zirconia bars were sandblasted (35 μm Al2O3, 1.5 bar pressure). Lithium disilicate bars were HF etched (20 s, IPS Ceramic Etching Gel, Ivoclar Vivadent) and silanized with ESPE Sil (3M ESPE). Forty bars of zirconia were luted in twos perpendicular to each other as were 40 bars of lithium disilicate using RelyX Unicem Automix 2 (3M ESPE), G-Cem LinkAce (GC Europe) or Maxcem Elite (Kerr) in self- or dual-curing mode. Half of the specimens from each material were submitted to tensile bond strength (TBS) testing after 24-h storage in distilled water at 37°C, and half underwent TBS testing after thermocycling (5000 cycles, 5°C/55°C, 30-s dwell time). Bond strength values for each bonding substrate were analyzed using one-way ANOVA (Student-Newman- Keuls, α=0.05). On zirconia, dual-curing resulted in significantly (p<0.05) higher tensile bond strengths compared to self-curing, with the exception of RelyX Unicem 2 after thermocycling. Thermocycling significantly (p<0.05) reduced the tensile bond strength of Maxcem Elite to zirconia in both curing modes. The TBS of self-adhesive cements to lithium disilicate showed no significant (p>0.05) difference between the different curing modes and after thermocycling. For most of the investigated self-adhesive cements, bond strengths to zirconia were increased by dual curing; this was not true for lithium disilicate. For luting on zirconia with self-adhesive cements, dual curing is strongly recommended in clinical situations.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acqua, suitable for HPLC
Sigma-Aldrich
Acqua, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Acqua, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrofluoric acid, ACS reagent, 48%
Sigma-Aldrich
Acqua, Deionized
Sigma-Aldrich
Acqua, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Hydrofluoric acid, 48 wt. % in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Acqua, for molecular biology, sterile filtered
Sigma-Aldrich
Acqua, BioPerformance Certified
Sigma-Aldrich
Acqua, ACS reagent
Sigma-Aldrich
Acqua, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Zirconium, powder, −100 mesh
Sigma-Aldrich
Acqua, PCR Reagent
Supelco
Acqua, suitable for ion chromatography
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Acqua, endotoxin, free
Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Supelco
Acqua, for TOC analysis
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis
Sigma-Aldrich
Yttrium, chips, 99.9% trace rare earth metals basis
Supelco
Acqua, ACS reagent, for ultratrace analysis
Acqua, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
Acqua, tested according to Ph. Eur.
Zirconium, foil, light tested, 150x150mm, thickness 0.05mm, annealed, 99.2%
Zirconium, sponge, 500g, max. size 25mm, 99.2%
Sigma-Aldrich
Yttrium sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.9% trace metals basis
Acqua, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Zirconium, rod, 100mm, diameter 1.5mm, 99.2%
Zirconium, rod, 500mm, diameter 1.5mm, 99.2%