Passa al contenuto
Merck

Microtensile bond strength of lithium disilicate ceramics to resin adhesives.

The journal of adhesive dentistry (2014-12-18)
Moustafa N Aboushelib, Donia Sleem
ABSTRACT

To evaluate the influence of the internal structure of lithium disilicate glass ceramics (LDC) on the microtensile bond strength to a resin adhesive using two surface treatments. Milling blocks of three types of LDC were sectioned (4 mm thick) using a precision cutting machine: IPS Empress 2 (conventional LDC), IPSe.max CAD (a refined crystal high strength LDC), and Celtra (zirconia reinforced LDC). Cut specimens received crystallization heat treatment as suggested by the manufacturers. Two surface treatments were performed on each group: hydrofluoric acid etching (HF) and airborne particle abrasion using 50-μm glass beads, while the as-cut surface served as control. Treated surfaces were examined using scanning electron microscopy (SEM). The disks were coated with a silane primer and bonded to pre-aged resin composite disks (Tetric EvoCeram) using a resin adhesive (Variolink II) and then stored in water for 3 months. Bonded specimens were sectioned into micro-bars (1x1x6 mm) and microtensile bond strength test (MTBS) was performed. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (α=0.05). Statistical analysis revealed significant differences in microtensile bond strength values between different LDCs (F=67, p<0.001), different surface treatments (F=232, p<0.001), and interaction between LDC and surface treatments (F=10.6, p<0.001). Microtensile bond strength of Celtra ceramic (30.4±4.6 MPa) was significantly higher than both IPS Empress 2 (21.5±5.9 MPa) and IPSe.max ceramics (25.8±4.8 MPa), which had almost comparable MTBS values. SEM images demonstrated homogenous glassy matrix and reinforcing zirconia fillers characteristic of Celtra ceramic. Heat treatment resulted in growth and maturation of lithium disilicate crystals. Particle abrasion resulted in abrasion of the glass matrix and exposure of lithium disilicate crystals, while HF etching produced a microrough surface, which resulted in higher MTBS values and reduction in the percentage of adhesive failure for all groups. Within the limitations of this study, bond strength to lithium disilicate ceramics depends on proper surface treatment and on the chemical composition of the glass ceramic.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acqua, suitable for HPLC
Sigma-Aldrich
Acqua, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Acqua, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrofluoric acid, ACS reagent, 48%
Sigma-Aldrich
Acqua, Deionized
Sigma-Aldrich
Acqua, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Hydrofluoric acid, 48 wt. % in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Acqua, for molecular biology, sterile filtered
Sigma-Aldrich
Zirconium(IV) oxide, powder, 5 μm, 99% trace metals basis
Sigma-Aldrich
Acqua, BioPerformance Certified
Sigma-Aldrich
Zirconium(IV) oxide, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Acqua, ACS reagent
Sigma-Aldrich
Acqua, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Zirconium, powder, −100 mesh
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Acqua, PCR Reagent
Sigma-Aldrich
Zirconium(IV) oxide, 99.99% trace metals basis (purity excludes ~2% HfO2)
Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Acqua, endotoxin, free
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis
Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 10 wt. % in H2O
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O
Supelco
Acqua, ACS reagent, for ultratrace analysis
Acqua, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Supelco
Acqua, suitable for ion chromatography
Zirconium, foil, light tested, 150x150mm, thickness 0.05mm, annealed, 99.2%
Supelco
Acqua, for TOC analysis
Sigma-Aldrich
Acqua, tested according to Ph. Eur.
Zirconium, sponge, 500g, max. size 25mm, 99.2%