Ugrás a tartalomra
Merck
  • Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales.

Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales.

The New phytologist (2017-10-11)
Samuel Lopez-Nieves, Ya Yang, Alfonso Timoneda, Minmin Wang, Tao Feng, Stephen A Smith, Samuel F Brockington, Hiroshi A Maeda
KIVONAT

Diverse natural products are synthesized in plants by specialized metabolic enzymes, which are often lineage-specific and derived from gene duplication followed by functional divergence. However, little is known about the contribution of primary metabolism to the evolution of specialized metabolic pathways. Betalain pigments, uniquely found in the plant order Caryophyllales, are synthesized from the aromatic amino acid l-tyrosine (Tyr) and replaced the otherwise ubiquitous phenylalanine-derived anthocyanins. This study combined biochemical, molecular and phylogenetic analyses, and uncovered coordinated evolution of Tyr and betalain biosynthetic pathways in Caryophyllales. We found that Beta vulgaris, which produces high concentrations of betalains, synthesizes Tyr via plastidic arogenate dehydrogenases (TyrAa /ADH) encoded by two ADH genes (BvADHα and BvADHβ). Unlike BvADHβ and other plant ADHs that are strongly inhibited by Tyr, BvADHα exhibited relaxed sensitivity to Tyr. Also, Tyr-insensitive BvADHα orthologs arose during the evolution of betalain pigmentation in the core Caryophyllales and later experienced relaxed selection and gene loss in lineages that reverted from betalain to anthocyanin pigmentation, such as Caryophyllaceae. These results suggest that relaxation of Tyr pathway regulation increased Tyr production and contributed to the evolution of betalain pigmentation, highlighting the significance of upstream primary metabolic regulation for the diversification of specialized plant metabolism.

ANYAGOK
Cikkszám
Márka
Termékleírás

Sigma-Aldrich
Sephadex® G-50, Fine