Ugrás a tartalomra
Merck
  • Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns.

Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns.

Cell (2018-03-27)
Laura Magill Sack, Teresa Davoli, Mamie Z Li, Yuyang Li, Qikai Xu, Kamila Naxerova, Eric C Wooten, Ronald J Bernardi, Timothy D Martin, Ting Chen, Yumei Leng, Anthony C Liang, Kathleen A Scorsone, Thomas F Westbrook, Kwok-Kin Wong, Stephen J Elledge
KIVONAT

Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.

ANYAGOK
Cikkszám
Márka
Termékleírás

Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone hVIN-1, ascites fluid
Sigma-Aldrich
Anti-p21WAF1 (Ab-1) Mouse mAb (EA10), liquid, clone EA10, Calbiochem®