跳转至内容
Merck
  • The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment (2015-09-29)
Kristýna Šindelářová, Jiřina Száková, Jana Tremlová, Oto Mestek, Lukáš Praus, Antonín Kaňa, Jana Najmanová, Pavel Tlustoš
摘要

A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

材料
货号
品牌
产品描述

Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
氯化氢 溶液, 4.0 M in dioxane
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
氯化氢 溶液, 2.0 M in diethyl ether
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
甲醇, Absolute - Acetone free
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
硒, powder, −100 mesh, 99.99% trace metals basis
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
盐酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, JIS special grade, ≥99.8%
Sigma-Aldrich
硒, powder, −100 mesh, ≥99.5% trace metals basis
Sigma-Aldrich
氯化氢 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
盐酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
氯化氢, ReagentPlus®, ≥99%
Sigma-Aldrich
盐酸, puriss., 24.5-26.0%
Sigma-Aldrich
盐酸 溶液, 1 M
Sigma-Aldrich
1-丁烷磺酸钠, 98%
Sigma-Aldrich
盐酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
甲醇, SAJ first grade, ≥99.5%