跳转至内容
Merck

G4291

Sigma-Aldrich

Anti-GABAA Receptor (α3 subunit) antibody produced in rabbit

affinity isolated antibody, lyophilized powder

登录查看公司和协议定价


About This Item

MDL號碼:
分類程式碼代碼:
12352203
NACRES:
NA.41

生物源

rabbit

品質等級

共軛

unconjugated

抗體表格

affinity isolated antibody

抗體產品種類

primary antibodies

無性繁殖

polyclonal

形狀

lyophilized powder

物種活性

rat

技術

immunohistochemistry: 1:200 using Rat brain frozen sections
western blot: 1:200-1:300 using Rat brain membranes

UniProt登錄號

運輸包裝

wet ice

儲存溫度

−20°C

目標翻譯後修改

unmodified

基因資訊

human ... GABRA3(2556)
mouse ... Gabra3(14396)
rat ... Gabra3(24947)

一般說明

GABAA and GABAB receptors differ with regard to their ionic characteristics and pharmacological properties. The GABAA receptor is an ionotropic receptor that forms the GABA gated chloride channel and consists of several heterogeneous subunits with membrane recognition sites for benzodiazapenes.

免疫原

peptide corresponding to amino acid residues 1-15 of human GABA(A) receptor α3 subunit. Identical in rat and mouse. Highly conserved (14/15 residues) in bovine.

應用

Anti-GABAA Receptor (α3 subunit) antibody produced in rabbit is suitable for immunohistochemistry at a working dilution of 1:200 using rat brain frozen sections and immunoblotting at 1:200-1:300 using rat brain membranes.

生化/生理作用

The inhibitory neurotransmitter GABA signals through two distinct types of pre- and postsynaptic receptors, GABAA and GABAB. Both GABA receptors can regulate depression of synaptic transmission and be involved in the inhibition controlling neuronal excitability. α3 is a subtype of GABAA receptor expressed selectively by serotonergic and GABAergic neurons. Serotonergic neurons express strong α3 immunoreactivity but, do not show any α1 immunoreactivity. On the contrary, GABAergic neurons express both α1 and α3 subunits.

外觀

Lyophilized from phosphate buffered saline, pH 7.4, containing 1% bovine serum albumin, 5% sucrose and 0.025% sodium azide

免責聲明

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

未找到合适的产品?  

试试我们的产品选型工具.

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 2

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Shubhash C Yadav et al.
Frontiers in molecular neuroscience, 12, 99-99 (2019-05-09)
In the mammalian retina, amacrine cells represent the most diverse cell class and are involved in the spatio-temporal processing of visual signals in the inner plexiform layer. They are connected to bipolar, other amacrine and ganglion cells, forming complex networks
Keita Harada et al.
Journal of neurochemistry, 158(2), 153-168 (2021-03-12)
γ-Aminobutyric acid (GABA) is thought to play a paracrine role in adrenal medullary chromaffin (AMC) cells. Comparative physiological and immunocytochemical approaches were used to address the issue of how the paracrine function of GABA in AMC cells is established. GABAA
Bianca Brüggen et al.
The European journal of neuroscience, 41(6), 734-747 (2014-12-30)
In vertebrate retinas, wide-field amacrine cells represent a diverse class of interneurons, important for the extraction of selective features, like motion or objects, from the visual scene. Most types of wide-field amacrine cells lack dedicated output processes, whereas some types
B Gao et al.
Neuroscience, 54(4), 881-892 (1993-06-01)
GABAA-receptors in the brain display a striking structural heterogeneity, which is based on a multiplicity of diverse subunits. The allocation of GABAA-receptor subtypes to identified neurons is essential for an analysis of the functional significance of receptor heterogeneity. Among GABA-receptive
Yeri J Song et al.
Cerebral cortex (New York, N.Y. : 1991), 32(1), 197-215 (2021-07-06)
Fragile X syndrome (FXS) is the leading monogenic form of intellectual disability and autism, with patients exhibiting numerous auditory-related phenotypes during their developmental period, including communication, language development, and auditory processing deficits. Despite FXS studies describing excitatory-inhibitory (E-I) imbalance in

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门