Direkt zum Inhalt
Merck
  • Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R.

Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R.

Proceedings of the National Academy of Sciences of the United States of America (2014-08-27)
Matthew L Kraushar, Kevin Thompson, H R Sagara Wijeratne, Barbara Viljetic, Kristina Sakers, Justin W Marson, Dimitris L Kontoyiannis, Steven Buyske, Ronald P Hart, Mladen-Roko Rasin
ZUSAMMENFASSUNG

Precise spatiotemporal control of mRNA translation machinery is essential to the development of highly complex systems like the neocortex. However, spatiotemporal regulation of translation machinery in the developing neocortex remains poorly understood. Here, we show that an RNA-binding protein, Hu antigen R (HuR), regulates both neocorticogenesis and specificity of neocortical translation machinery in a developmental stage-dependent manner in mice. Neocortical absence of HuR alters the phosphorylation states of initiation and elongation factors in the core translation machinery. In addition, HuR regulates the temporally specific positioning of functionally related mRNAs into the active translation sites, the polysomes. HuR also determines the specificity of neocortical polysomes by defining their combinatorial composition of ribosomal proteins and initiation and elongation factors. For some HuR-dependent proteins, the association with polysomes likewise depends on the eukaryotic initiation factor 2 alpha kinase 4, which associates with HuR in prenatal developing neocortices. Finally, we found that deletion of HuR before embryonic day 10 disrupts both neocortical lamination and formation of the main neocortical commissure, the corpus callosum. Our study identifies a crucial role for HuR in neocortical development as a translational gatekeeper for functionally related mRNA subgroups and polysomal protein specificity.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
USP
Saccharose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
SAFC
BIS-TRIS
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Saccharose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)
Supelco
Saccharose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Saccharose, meets USP testing specifications
Sigma-Aldrich
Saccharose, ACS reagent
SAFC
BIS-TRIS
Millipore
Saccharose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Saccharose, puriss., meets analytical specification of Ph. Eur., BP, NF
Supelco
Saccharose, analytical standard, for enzymatic assay kit SCA20
Saccharose, European Pharmacopoeia (EP) Reference Standard