Direkt zum Inhalt
Merck
  • High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2.

High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2.

PLoS pathogens (2019-03-01)
Sujita Khanal, Denise A Galloway
ZUSAMMENFASSUNG

Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we elucidate how E6/E7 attenuate the Fanconi anemia (FA) DNA crosslink repair pathway. Though E6/E7 activated the pathway by increasing FancD2 monoubiquitination and foci formation, they inhibited the completion of the repair by multiple mechanisms. E6/E7 impaired FancD2 colocalization with double-strand breaks (DSB), which subsequently hindered the recruitment of the downstream protein Rad51 to DSB in E6 cells. Further, E6 expression caused delayed FancD2 de-ubiquitination, an important process for effective ICL repair. Delayed FancD2 de-ubiquitination was associated with the increased chromatin retention of FancD2 hindering USP1 de-ubiquitinating activity, and persistently activated ATR/CHK-1/pS565 FancI signaling. E6 mediated p53 degradation did not hamper the cell cycle specific process of FancD2 modifications but abrogated repair by disrupting FancD2 de-ubiquitination. Further, E6 reduced the expression and foci formation of Palb2, which is a repair protein downstream of FancD2. These findings uncover unique mechanisms by which HPV oncogenes contribute to genomic instability and the response to cisplatin therapies.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-phospho-Histon H2A.X (Ser139)-Antikörper, Klon JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
Monoklonaler Anti-Vinculin-Antikörper in Maus hergestellte Antikörper, clone hVIN-1, ascites fluid
Sigma-Aldrich
Mitomycin C aus Streptomyces caespitosus, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
1-Decanol, ≥98%