Accéder au contenu
MilliporeSigma

Effects of the addition of dimer acid alkyl esters on the properties of ethyl cellulose.

Carbohydrate polymers (2015-02-11)
Sangjun Lee, Kwang-Hwan Ko, Jihoon Shin, Nam-Kyun Kim, Young-Wun Kim, Joon-Seop Kim
RÉSUMÉ

In this study, we synthesized dimer acid (DA) esters, having short to long alkyl chains, (DA-Cn) by the Diels-Alder reaction and subsequent esterification reaction of fatty acids that were prepared by the hydrolysis of waste vegetable oil. It was found that the DA-Cn were thermally more stable than common petroleum-based plasticizer DOP. When the DOP, DA, or DA-Cn with short alkyl chains were added to ethyl cellulose (EC), the optical clarity and SEM images of the samples showed their good miscibility with those additives in a micro-scale. It was also found that the rubbery modulus of the EC decreased with increasing amount of additives; the type of the additives did not affect the rates of the decrease in the rubbery modulus. The main transition temperatures of the EC containing either DA or DA-C1 or DA-C4 decreased with increasing amounts of those additives and were comparable to that of the DOP-containing EC. The above findings suggested that the DA and its esters with short alkyl chains could act as effective plasticizer and, thus, could be used instead of the DOP. In addition, the results obtained from tensile testing and leaching experiments implied that the DA might be better plasticizer than the DA-C1 and DA-C4, at least in some cases, because of hydrogen-bonding with the EC.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Toluène, suitable for HPLC, 99.9%
Sigma-Aldrich
Toluène, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Butan-1-ol, 99.9%
Sigma-Aldrich
Butan-1-ol, ACS reagent, ≥99.4%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Butan-1-ol, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Méthanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Méthanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
p-Toluenesulfonic acid monohydrate, ≥99% (calc. to H2O free subst.)
Sigma-Aldrich
Toluène, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.7% (GC)
Sigma-Aldrich
Éthanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Toluène, anhydrous, 99.8%
Sigma-Aldrich
Méthanol, BioReagent, ≥99.93%
Sigma-Aldrich
Méthanol, Absolute - Acetone free
Sigma-Aldrich
Méthanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Méthanol, anhydrous, 99.8%
Sigma-Aldrich
Tetramethylsilane, ACS reagent, NMR grade, ≥99.9%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Butan-1-ol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
2-Ethyl-1-hexanol, ≥99.6%
USP
Méthanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
Butan-1-ol, for molecular biology, ≥99%
Sigma-Aldrich
Toluène, Laboratory Reagent, ≥99.3%
Sigma-Aldrich
p-Toluenesulfonic acid monohydrate, ACS reagent, ≥98.5%