Accéder au contenu
MilliporeSigma
  • Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy.

Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy.

PloS one (2014-12-03)
Valentina Fodale, Natalie C Kegulian, Margherita Verani, Cristina Cariulo, Lucia Azzollini, Lara Petricca, Manuel Daldin, Roberto Boggio, Alessandro Padova, Rainer Kuhn, Robert Pacifici, Douglas Macdonald, Ryan C Schoenfeld, Hyunsun Park, J Mario Isas, Ralf Langen, Andreas Weiss, Andrea Caricasole
RÉSUMÉ

In Huntington's disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays. By performing TR-FRET measurements on the same samples (purified recombinant proteins or lysates from cells expressing HTT fragments or full length protein) at different temperatures, we have discovered a temperature-dependent, reversible, polyglutamine-dependent conformational change of wild type and expanded mutant HTT proteins. Circular dichroism spectroscopy confirms the temperature and polyglutamine-dependent change in HTT structure, revealing an effect of polyglutamine length and of temperature on the alpha-helical content of the protein. The temperature- and polyglutamine-dependent effects observed with TR-FRET on HTT proteins represent a simple, scalable, quantitative and sensitive assay to identify genetic and pharmacological modulators of mutant HTT conformation, and potentially to assess the relevance of conformational changes during onset and progression of Huntington's disease.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Glycérol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycérol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycérol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Sodium Dodecyl Sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium Dodecyl Sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Urée, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium Dodecyl Sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
Sodium phosphate, 96%
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Sodium Dodecyl Sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Glycérol solution, 83.5-89.5% (T)
Sigma-Aldrich
Acide éthylènediaminetétraacétique solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycérol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycérol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Sodium Dodecyl Sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycérol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
USP
Glycérine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Chlorure de sodium, 99.999% trace metals basis
Sigma-Aldrich
Glycérol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Anti-GAPDH antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution