Pular para o conteúdo
Merck
Todas as fotos(1)

Documentos Principais

760439

Sigma-Aldrich

Benzyl benzodithioate

96%

Sinônimo(s):

BDTB, Benzenecarbodithioic acid, phenylmethyl ester, Benzyl benzenecarbodithioate, Benzyl dithiobenzoate, Benzyl phenyl RAFT agent

Faça loginpara ver os preços organizacionais e de contrato


About This Item

Fórmula empírica (Notação de Hill):
C14H12S2
Número CAS:
Peso molecular:
244.38
Número MDL:
Código UNSPSC:
12352100
ID de substância PubChem:
NACRES:
NA.23

Ensaio

96%

Formulário

powder

índice de refração

n20/D 1.696

densidade

1.182 g/mL at 25 °C

temperatura de armazenamento

2-8°C

cadeia de caracteres SMILES

S=C(SCc1ccccc1)c2ccccc2

InChI

1S/C14H12S2/c15-14(13-9-5-2-6-10-13)16-11-12-7-3-1-4-8-12/h1-10H,11H2

chave InChI

ZCKPFAYILJKXAT-UHFFFAOYSA-N

Descrição geral

Need help choosing the correct RAFT Agent? Please consult the RAFT Agent to Monomer compatibility table.

Aplicação

RAFT agent for controlled radical polymerization; Chain Transfer Agent (CTA) well-suited for methacrylates, methacrylamides, and styrenes.

Pictogramas

Exclamation markEnvironment

Palavra indicadora

Warning

Frases de perigo

Classificações de perigo

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Skin Sens. 1

Código de classe de armazenamento

10 - Combustible liquids

Classe de risco de água (WGK)

WGK 3

Ponto de fulgor (°F)

No data available

Ponto de fulgor (°C)

No data available


Escolha uma das versões mais recentes:

Certificados de análise (COA)

Lot/Batch Number

Não está vendo a versão correta?

Se precisar de uma versão específica, você pode procurar um certificado específico pelo número do lote ou da remessa.

Já possui este produto?

Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.

Visite a Biblioteca de Documentos

Liping Zhao et al.
Analytical and bioanalytical chemistry (2018-06-18)
Fabrication of polymer membranes with nanopores and a confinement effect toward enzyme immobilization has been an enabling endeavor. In the work reported here, an enzyme reactor based on a thermoresponsive magnetic porous block copolymer membrane was designed and constructed. Reversible
Yiyi Liu et al.
ACS nano, 13(6), 6760-6769 (2019-05-31)
Thiol-polystyrene (SH-PS)-capped plasmonic nanoparticles can be fabricated into free-standing, one-nanoparticle-thick superlattice sheets (termed plasmene) based on physical entanglement between ligands, which, however, suffer from irreversible dissociation in organic solvents. To address this issue, we introduce coumarin-based photo-cross-linkable moieties to the
Liping Zhao et al.
Journal of chromatography. A, 1548, 104-110 (2018-03-28)
A chiral ligand exchange capillary electrochromatography (CLE-CEC) protocol was designed and implemented for d,l-amino acids enantioseparation with poly(maleic anhydride-styrene-methacryloyl-l-arginine methyl ester) as the coating. The block copolymer was synthesized through the reversible addition fragmentation chain transfer reaction. In the constructed
Ali Azizi et al.
Journal of chromatography. A, 1610, 460534-460534 (2019-09-22)
Magnetic molecularly imprinted polymers (MMIPs) combine nanotechnology and molecular imprinting technology to offer selective and tunable enrichment for water analysis. In this paper, a selective sorbent was prepared by surface polymerization onto magnetic Fe3O4@SiO2 nanoparticles through reversible addition fragmentation chain
Massimo Benaglia et al.
Journal of the American Chemical Society, 131(20), 6914-6915 (2009-05-01)
The polymerization of most monomers that are polymerizable by radical polymerization can be controlled by the reversible addition-fragmentation chain transfer (RAFT) process. However, it is usually required that the RAFT agent be selected according to the types of monomer being

Artigos

The modification of biomacromolecules, such as peptides and proteins, through the attachment of synthetic polymers has led to a new family of highly advanced biomaterials with enhanced properties.

Micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization.

Protocolos

We present an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

Polymerization via ATRP procedures demonstrated by Prof. Dave Haddleton's research group at the University of Warwick.

Questions

Reviews

No rating value

Active Filters

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica