Accéder au contenu
Merck

Cyclosporine A enhances gluconeogenesis while sirolimus impairs insulin signaling in peripheral tissues after 3 weeks of treatment.

Biochemical pharmacology (2014-06-25)
P C Lopes, A Fuhrmann, F Carvalho, J Sereno, M R Santos, M J Pereira, J W Eriksson, F Reis, E Carvalho
RÉSUMÉ

Cyclosporine A (CsA) and sirolimus (SRL) are immunosuppressive agents (IA) associated with new-onset diabetes after transplantation (NODAT). This study aims to evaluate the effects of 3-weeks of treatment with either CsA (5 mg/kg BW/day) or SRL (1 mg/kg BW/day) on insulin signaling and expression of markers involved in glucose metabolism in insulin-sensitive tissues, in Wistar rats. Although no differences were observed in fasting glucose, insulin or C-peptide levels, both treated groups displayed an impaired glucose excursion during both glucose and insulin tolerance tests. These results suggest glucose intolerance and insulin resistance. An increase in glucose-6-phosphatase protein levels (68%, p < 0.05) and in protein-tyrosine phosphatase 1B (163%, p < 0.05), a negative regulator of insulin was observed in the CsA-treated group in the liver, indicating enhanced gluconeogenesis and increased insulin resistance. On the other hand, glucokinase protein levels were decreased in the SRL group (35%, p < 0.05) compared to vehicle, suggesting a decrease in glucose disposal. SRL treatment also reduced peroxisome proliferator-activated receptor γ coactivator 1 alpha protein expression in muscle (~50%, p < 0.05), while no further protein alterations were observed in muscle and perirenal adipose tissue nor with the CsA treatment. Moreover, the phosphorylation of key proteins of the insulin signaling cascade was suppressed in the SRL group, but was unchanged by the CsA treatment. Taken together, these data suggest that CsA treatment enhances gluconeogenic factors in liver, while SRL treatment impairs insulin signaling in peripheral tissues, which can contribute to the development of insulin resistance and NODAT associated with immunosuppressive therapy.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroforme, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Chloroforme, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroforme, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, meets USP testing specifications
Sigma-Aldrich
Pyrocarbonate de diéthyle, 96% (NT)
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Méthanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Chloroforme, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroforme, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Alcool isopropylique, ≥99.7%, FCC, FG
Sigma-Aldrich
Méthanol, Absolute - Acetone free
Sigma-Aldrich
Méthanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Méthanol, BioReagent, ≥99.93%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
USP
Méthanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Chloroforme, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
Chloroforme, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%