Accéder au contenu
Merck

uPAR targeted radionuclide therapy with (177)Lu-DOTA-AE105 inhibits dissemination of metastatic prostate cancer.

Molecular pharmaceutics (2014-06-24)
Morten Persson, Karina Juhl, Palle Rasmussen, Malene Brandt-Larsen, Jacob Madsen, Michael Ploug, Andreas Kjaer
RÉSUMÉ

The urokinase-type plasminogen activator receptor (uPAR) is implicated in cancer invasion and metastatic development in prostate cancer and provides therefore an attractive molecular target for both imaging and therapy. In this study, we provide the first in vivo data on an antimetastatic effect of uPAR radionuclide targeted therapy in such lesions and show the potential of uPAR positron emission tomography (PET) imaging for identifying small foci of metastatic cells in a mouse model of disseminating human prostate cancer. Two radiolabeled ligands were generated in high purity and specific activity: a uPAR-targeting probe ((177)Lu-DOTA-AE105) and a nonbinding control ((177)Lu-DOTA-AE105mut). Both uPAR flow cytometry and ELISA confirmed high expression levels of the target uPAR in PC-3M-LUC2.luc cells, and cell binding studies using (177)Lu-DOTA-AE105 resulted in a specific binding with an IC50 value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted (177)Lu groups (p < 0.05) using bioluminescence imaging. Moreover, we found a significantly longer metastatic-free survival, with 65% of all mice without any disseminated metastatic lesions present at 65 days after first treatment dose (p = 0.047). In contrast, only 30% of all mice in the combined control groups treated with (177)Lu-DOTA-AE105mut or vehicle were without metastatic lesions. No treatment-induced toxicity was observed during the study as evaluated by observing animal weight and H&E staining of kidney tissue (dose-limiting organ). Finally, uPAR PET imaging using (64)Cu-DOTA-AE105 detected all small, disseminated metastatic foci when compared with bioluminescence imaging in a cohort of animals during the treatment study. In conclusion, uPAR targeted radiotherapy resulted in a significant reduction in the number of metastatic lesions in a human metastatic prostate cancer model. Furthermore, we have provided the first evidence of the potential for identification of small metastatic lesions using uPAR PET imaging in disseminated prostate cancer, illustrating the promising strategy of uPAR theranostics in prostate cancer.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acétate d′ammonium, ACS reagent, ≥97%
Sigma-Aldrich
Acétate d′ammonium, ≥99.99% trace metals basis
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Méthanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Acétate d′ammonium, for molecular biology, ≥98%
Sigma-Aldrich
Méthanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Acétate d′ammonium solution, for molecular biology, 7.5 M
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Méthanol, BioReagent, ≥99.93%
Sigma-Aldrich
Méthanol, Absolute - Acetone free
USP
Méthanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acétate d′ammonium, 99.999% trace metals basis
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Supelco
Acétate d′ammonium, LiChropur, eluent additive for LC-MS
Supelco
Méthanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Méthanol, NMR reference standard
Sigma-Aldrich
Acétate d′ammonium, reagent grade, ≥98%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Acétate d′ammonium, BioXtra, ≥98%
Sigma-Aldrich
Acétate d′ammonium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Acétate d′ammonium, BioUltra, for molecular biology, ≥99.0%
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))