Direkt zum Inhalt
Merck
  • Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals.

Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals.

PloS one (2014-12-10)
Mirosława Różycka, Magdalena Wojtas, Michał Jakób, Christian Stigloher, Mikołaj Grzeszkowiak, Maciej Mazur, Andrzej Ożyhar
ZUSAMMENFASSUNG

Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Ammoniak -Lösung, 7 N in methanol
Sigma-Aldrich
Calciumcarbonat, ACS reagent, ≥99.0%, powder
Sigma-Aldrich
Ammoniumcarbonat, ACS reagent, ≥30.0% NH3 basis
Sigma-Aldrich
Calciumcarbonat, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E170, precipitated, 98.5-100.5% (based on anhydrous substance)
Sigma-Aldrich
Ammoniumcarbonat, 99.999% trace metals basis
Sigma-Aldrich
Ammoniak -Lösung, 0.4 M in dioxane
Sigma-Aldrich
Ammoniak -Lösung, 2.0 M in ethanol
Sigma-Aldrich
Ammoniak, anhydrous, ≥99.98%
Sigma-Aldrich
Ammoniak -Lösung, 4 M in methanol
Sigma-Aldrich
Ammoniak -Lösung, 0.4 M in THF
Sigma-Aldrich
Calciumcarbonat, powder, ≤50 μm particle size, 98%
Sigma-Aldrich
Stickstoff, ≥99.998%
Sigma-Aldrich
Calciumcarbonat, ReagentPlus®
Sigma-Aldrich
Ammoniak -Lösung, 2.0 M in isopropanol
Sigma-Aldrich
Argon, ≥99.998%
Sigma-Aldrich
Calciumcarbonat, ACS reagent, chelometric standard, 99.95-100.05% dry basis
Sigma-Aldrich
Calciumcarbonat, 99.999% trace metals basis
Sigma-Aldrich
Calciumcarbonat, BioReagent, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Ammoniak, puriss., anhydrous, ≥99.95%
Supelco
Calciumcarbonat, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Calciumcarbonat, reference material for titrimetry, certified by BAM, ≥99.5%
Sigma-Aldrich
Calciumcarbonat, ≥99.995% trace metals basis
Sigma-Aldrich
Calciumcarbonat, BioUltra, precipitated, ≥99.0% (KT)
USP
Calciumcarbonat (AS), United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Stains-All, ~95%
Sigma-Aldrich
Calciumcarbonat, BioXtra, ≥99.0%
Sigma-Aldrich
Ammoniak-14N, 99.99 atom % 14N
Sigma-Aldrich
Calciumcarbonat, tested according to Ph. Eur.
Sigma-Aldrich
Argon-40Ar, 99.95 atom %