Direkt zum Inhalt
Merck

Effect of nanovaccine chemistry on humoral immune response kinetics and maturation.

Nanoscale (2014-10-07)
Shannon L Haughney, Kathleen A Ross, Paola M Boggiatto, Michael J Wannemuehler, Balaji Narasimhan
ZUSAMMENFASSUNG

Acute respiratory infections represent a significant portion of global morbidity and mortality annually. There is a critical need for efficacious vaccines against respiratory pathogens. To vaccinate against respiratory disease, pulmonary delivery is an attractive route because it mimics the route of natural infection and can confer both mucosal and systemic immunity. We have previously demonstrated that a single dose, intranasal vaccine based on polyanhydride nanoparticles elicited a protective immune response against Yersinia pestis for at least 40 weeks after immunization with F1-V. Herein, we investigate the effect of nanoparticle chemistry and its attributes on the kinetics and maturation of the antigen-specific serum antibody response. We demonstrate that manipulation of polyanhydride nanoparticle chemistry facilitated differential kinetics of development of antibody titers, avidity, and epitope specificity. The results provide new insights into the underlying role(s) of nanoparticle chemistry in providing long-lived humoral immunity and aid in the rational design of nanovaccine formulations to induce long-lasting and mature antibody responses.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Dichlormethan, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Schwefelsäure, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dichlormethan, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Aceton, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Toluol, ACS reagent, ≥99.5%
Sigma-Aldrich
Diethylether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Diethylether, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Dichlormethan, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Diethylether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Toluol, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Hexan, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexan, suitable for HPLC, ≥95%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Schwefelsäure, 99.999%
Sigma-Aldrich
Pentan, ≥99% (GC)
Sigma-Aldrich
Hexan, Laboratory Reagent, ≥95%
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Hexan, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%