Direkt zum Inhalt
Merck

202487

Sigma-Aldrich

Poly(ethylenglycol)methylether

average MN 550, methoxy, hydroxyl

Synonym(e):

Methoxy-polyethylenglykol, Polyethylenglykol-monomethylether, mPEG

Anmeldenzur Ansicht organisationsspezifischer und vertraglich vereinbarter Preise


About This Item

Lineare Formel:
CH3(OCH2CH2)nOH
CAS-Nummer:
MDL-Nummer:
UNSPSC-Code:
12162002
PubChem Substanz-ID:
NACRES:
NA.23

product name

Poly(ethylenglycol)methylether, average Mn 550

Dampfdichte

>1 (vs air)

Dampfdruck

0.05 mmHg ( 20 °C)

Form

semisolid

Mol-Gew.

average Mn 550

Brechungsindex

n20/D 1.455

Viskosität

7.5 cSt(210 °F)(lit.)

Übergangstemp.

Tm 20 °C

Dichte

1.089 g/mL at 25 °C

Ω-Ende

hydroxyl

α-Ende

methoxy

InChI

1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3

InChIKey

XNWFRZJHXBZDAG-UHFFFAOYSA-N

Suchen Sie nach ähnlichen Produkten? Aufrufen Leitfaden zum Produktvergleich

Anwendung

Poly(ethylenglykol)methylether kann als Porenbildungsmittel zum Herstellen von Polysulfonmembranen mit verbesserter Hydrophilie eingesetzt werden.

Poly(ethylenglykol)methylether-transplantierte Polyamidoamin (PAMAM)-Dendrimere können als Arzneimittelträgersysteme für Antikrebsmittel verwendet werden.

Lagerklassenschlüssel

10 - Combustible liquids

WGK

WGK 1

Flammpunkt (°F)

359.6 °F - closed cup

Flammpunkt (°C)

182 °C - closed cup


Analysenzertifikate (COA)

Suchen Sie nach Analysenzertifikate (COA), indem Sie die Lot-/Chargennummer des Produkts eingeben. Lot- und Chargennummern sind auf dem Produktetikett hinter den Wörtern ‘Lot’ oder ‘Batch’ (Lot oder Charge) zu finden.

Besitzen Sie dieses Produkt bereits?

In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.

Die Dokumentenbibliothek aufrufen

Kunden haben sich ebenfalls angesehen

Yiyi Yu et al.
Journal of pharmaceutical sciences, 102(3), 1054-1062 (2013-01-03)
To promote the application of methoxy poly(ethylene glycol)-cholesterol (mPEG-Chol), mPEG-Chol was used to prepare core-shell micelles encapsulating poorly water-soluble docetaxel (DTX-PM) by modified cosolvent evaporation method. Approaches to enhance DTX entrapment efficiency (EE) and minimize particle size were investigated in
Pengxiang Zhao et al.
Chemical communications (Cambridge, England), 49(31), 3218-3220 (2013-03-14)
"Click" chemistry now offers access to a great variety of triazoles, and the first example of a strategy to stabilize gold nanoparticles (AuNPs) with a new 1,2,3-triazole-mPEG ligand is developed here together with preliminary examples of possible applications.
Hyo Won Seo et al.
Biomaterials, 34(11), 2748-2757 (2013-01-25)
The effectiveness of systemically administered anticancer treatments is limited by difficulties in achieving therapeutic doses within tumors, a problem that is complicated by dose-limiting side effects to normal tissue. To increase the efficacy and reduce the toxicity of systemically administered
Mulu Z Tesfay et al.
Journal of virology, 87(7), 3752-3759 (2013-01-18)
We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic
Lei Liu et al.
International journal of pharmaceutics, 443(1-2), 175-182 (2013-01-05)
This work aims to develop curcumin (Cur) loaded biodegradable self-assembled polymeric micelles (Cur-M) to overcome poor water solubility of Cur and to meet the requirement of intravenous administration. Cur-M were prepared by solid dispersion method, which was simple and easy

Artikel

Biofouling control essential for device performance and safety; minimize accumulation of biomolecules and bioorganisms.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..

Setzen Sie sich mit dem technischen Dienst in Verbindung.