Skip to Content
Merck
All Photos(1)

Documents

53338-U

Supelco

Ascentis® Express 90 Å Phenyl-Hexyl (2.7 μm) HPLC Columns

L × I.D. 15 cm × 2.1 mm, HPLC Column

Synonym(s):

Core-shell (SPP) Fused Core Phenyl HPLC column

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41115700
eCl@ss:
32110501
NACRES:
SB.52

product name

Ascentis® Express Phenyl-Hexyl, 2.7 μm HPLC Column, 2.7 μm particle size, L × I.D. 15 cm × 2.1 mm

material

stainless steel column

Agency

suitable for USP L11

product line

Ascentis®

feature

endcapped

manufacturer/tradename

Ascentis®

packaging

1 ea of

parameter

60 °C temp. range
600 bar max. pressure (9000 psi)

technique(s)

HPLC: suitable
LC/MS: suitable
UHPLC-MS: suitable
UHPLC: suitable

L × I.D.

15 cm × 2.1 mm

surface area

135 m2/g

impurities

<5 ppm metals

matrix

Fused-Core particle platform
superficially porous particle

matrix active group

phenylhexyl phase

particle size

2.7 μm

pore size

90 Å

pH range

2-9

application(s)

food and beverages

separation technique

reversed phase

Looking for similar products? Visit Product Comparison Guide

General description

The Phenyl-Hexyl phase has unique selectivity arising from solute interaction with the aromatic ring and its delocalized electrons. It is complementary (orthogonal) to both C18 and RP-Amide phases because of this unique aromaticity. The Phenyl-Hexyl phase also tend to exhibit good shape selectivity, which may originate from solute multipoint interaction with the planar ring system. More retention and selectivity will often be observed for solutes with aromatic electron-withdrawing groups (fluorine, nitro, etc.) or with a delocalized heterocyclic ring system such as the benzodiazepine compounds.

Application

  • A Different Perspective on the Characterization of a New Degradation Product of Flibanserin With HPLC-DAD-ESI-IT-TOF-MSn and Its Pharmaceutical Formulation Analysis With Inter-Laboratory Comparison.: This study utilizes the Ascentis® Express Phenyl-Hexyl, 2.7 μm HPLC column to characterize degradation products of flibanserin, demonstrating its efficacy in high-resolution analytical applications (Geven et al., 2023).
  • HPLC with spectrophotometric or mass spectrometric detection for quantifying very-long chain fatty acids in human plasma and its association with cardiac risk factors.: The AAscentis® Express Phenyl-Hexyl column was employed for precise quantification of fatty acids, linking its use to critical clinical research on cardiac risk factors (Shrestha et al., 2021).
  • A fully automated and fast method using direct sample injection combined with fused-core column on-line SPE-HPLC for determination of ochratoxin A and citrinin in lager beers.: This research highlights the efficiency of the Ascentis® Express Phenyl-Hexyl column in detecting contaminants in beverages, emphasizing its role in food safety analysis (Lhotska et al., 2016).
  • A study of retention characteristics and quality control of nutraceuticals containing resveratrol and polydatin using fused-core column chromatography.: This study explores the retention characteristics of nutraceuticals using the Ascentis® Express Phenyl-Hexyl column, showcasing its utility in quality control of health supplements (Fibigr et al., 2016).
  • An on-line SPE-HPLC method for effective sample preconcentration and determination of fenoxycarb and cis, trans-permethrin in surface waters.: The Ascentis® Express Phenyl-Hexyl column was integral in preconcentrating and analyzing pesticide residues in environmental samples, underscoring its environmental analytical applications (Satinsky et al., 2015).

Legal Information

Ascentis is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

C M Chavez-Eng et al.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 1011, 204-214 (2016-01-17)
An ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of (4S,5R)-5-[3,5-bis (trifluoromethyl)phenyl]-3-{[4'-fluoro-5'-isopropyl-2'-methoxy-4-(trifluoromethyl)biphenyl-2-yl] methyl}-4-methyl-1,3-oxazolidin-2-one (anacetrapib, I) and [(13)C5(15)N]-anacetrapib, II in human plasma has been developed to support a clinical study to determine the absolute bioavailability of I.
Ivona Lhotská et al.
Analytical and bioanalytical chemistry, 408(12), 3319-3329 (2016-03-20)
A new fast and sensitive method based on on-line solid-phase extraction on a fused-core precolumn coupled to liquid chromatography with fluorescence detection has been developed for ochratoxin A (OTA) and citrinin (CIT) determination in lager beer samples. Direct injection of
Alex D Batista et al.
Talanta, 133, 142-149 (2014-12-02)
On-line sample pretreatment (clean-up and analyte preconcentration) is for the first time coupled to sequential injection chromatography. The approach combines anion-exchange solid-phase extraction and the highly effective pentafluorophenylpropyl (F5) fused-core particle column for separation of eight sulfonamide antibiotics with similar
E Lesellier
Journal of chromatography. A, 1266, 34-42 (2012-11-03)
The recent introduction of new stationary phases for liquid chromatography based on superficially porous particles, called core-shell or fused-core, dramatically improved the separation performances through very high efficiency, due mainly to reduced eddy diffusion. However, few studies have evaluated the
Petr Chocholouš et al.
Talanta, 103, 221-227 (2012-12-04)
Currently, for Sequential Injection Chromatography (SIC), only reversed phase C18 columns have been used for chromatographic separations. This article presents the first use of three different stationary phases: three core-shell particle-packed reversed phase columns in flow systems. The aim of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service