跳轉至內容
Merck
首頁微電子與奈米電子氧化石墨烯和還原氧化石墨烯的應用

氧化石墨烯和還原氧化石墨烯的應用

Avery Luedtke, Ph.D.

MilliporeSigma, Milwaukee, WI

簡介

氧化石墨烯(GO,產品編號 763705 and 777676)是一種獨特的材料,可視為具有各種含氧官能性(如環氧基、羰基、羧基和羥基)的單分子石墨層。1,2,3 在石墨烯(單層石墨)首次被分離和研究之後,人們對 GO 的興趣急劇增加。4 最初人們希望 GO 可以成為石墨烯的合成前體。5 當具有電絕緣性的 GO 被還原時, 還原氧化石墨烯 ;(GO, product number 777684)所形成的氧化石墨烯類似石墨烯,但含有殘留的氧和其他雜原子以及結構缺陷。6,7 如何製造出更接近原始石墨烯的 rGO,是這個領域的一大挑戰。儘管如此,由於 rGO 可以從 GO 在水中的水性分散液製成薄膜,且具有中等的導電性,因此在電子裝置中的應用相當具有吸引力。8,9,10,11,12 除了作為電子設備的元件之外,GO 和 rGO 還被用於納米複合材料、13,14 聚合物複合材料、13 能量儲存、14能量儲存、14 生物醫學應用、15,16,17 催化、18,19,20 以及作為表面活劑21 這些領域之間有一些重疊。 

GO的合成和還原

合成GO的許多現代程序都是基於Hummers首先報告的方法,其中石墨被硫酸中的高錳酸鉀溶液氧化。22 也有使用肼還原 GO 的報導。5 然而,肼具有很高的毒性,而且有可能使 GO 功能化為氮雜質原子。23 由於這些問題,肼的替代品包括 NaBH41424 和 HI25、26 等已被用於還原 GO。GO 可以以薄膜或水溶液的形式還原。6

電子

有幾種電子裝置是使用 GO 作為至少一種元件的起始材料製造出來的。27,28 採用 rGO 的場效應電晶體 (FET) 已被用作化學感測器29,30,31 和生物感測器。31 使用功能化 rGO 作為半導體的 GFET 已被用作生物傳感器來檢測荷爾蒙兒茶酚胺分子、32 阿維丁、33 和 DNA。34 In another study, GO that was functionalized with glucose oxidase and deposited on an electrode was used as an electrochemical glucose sensor.35

Visible light transparent electrodes are important for both light emitting diodes (LEDs) and solar cell devices.由於 GO 可以在溶液中進行加工,因此使用 rGO 作為透明電極,對於這些裝置而言,是其他透明電極 (例如 ITO) 的方便替代品。36,37 除了作為透明電極之外,rGO 還被用作聚合物太陽能電池和發光二極管38,39

中的空穴傳輸層。
Gfet 感測器

圖 1.(a) 在 Si/SiO2 基板上用作氣體感測器的典型後閘極 GFET。(b) 軟性聚對苯二甲酸乙二醇酯 (PET) 基板上的典型溶液閘極 GFET,用於水溶液中的化學和生物傳感器。經國家科學研究中心 (CNRS) 及英國皇家化學會許可,轉載自參考文獻 31。

能源儲存

rGO 的奈米複合材料已被用於鋰離子電池的高容量能源儲存。在這些研究中,電絕緣的金屬氧化物奈米粒子被吸附在 rGO 上,以增加這些材料在電池中的效能。40,41,42,43,44 例如,Fe3O4 的能量儲存容量和週期穩定性都有增加。/或 Fe2O3  (圖 2)。43 利用微波進行 GO 的剝離和還原,製造出高表面面積的 rGO。所形成的高比表面積 rGO 可作為超級電容中的能量儲存材料。

能量儲存容量與週期穩定性

圖 2.(a) GNS/Fe3O4 複合物的放電/充電剖面。(b) 商用 Fe3O4 顆粒、GNS/Fe3O4 複合物和裸 Fe2O3 顆粒在電流密度為 35 mA/g 時的循環效能 實心符號表示放電;空心符號表示充電。(c) GNS/Fe3O4 複合物在 700 mA/g 電流密度下 100 次循環時的循環效能。(d) 商用 Fe3O4 顆粒、GNS/Fe3O4 複合物和裸 Fe2O3 顆粒在不同電流密度下的速率效能。GNS = rGO。經參考 43 許可改編。版權所有 2010 美國化學學會。

生物醫學應用

GO在生物醫學領域的一個用途是作為藥物傳輸系統的成分。 Functionalized nanographene oxide (nGO, product number 795534)已被用於多項抗癌藥物靶向傳遞的研究中。聚乙二醇 (PEG) 功能化的 nGO 含有 SN38,一種 喜樹堿 (產品編號 H0165)的衍生物,吸附在表面上(nGO-PEG-SN38)被用來作為藥物的水溶性和血清溶解性來源。47 在該研究中,nGO-PEG-SN38在降低人類結腸癌細胞株HTC-116的細胞活力方面,比FDA批准的SN38原藥伊立替康(CPT-11)有效三個數量級(圖3)。47 nGO-PEG-SN38的有效性與DMSO中的SN38相似(圖3)47 小鼠的黑色素瘤皮膚癌已經用近紅外線雷射和nGO的光熱消融療法治療,nGO是用PEG和透明質酸功能化,並經皮下傳遞。48 在另一項研究中,磁鐵被吸附在載有抗癌藥物鹽酸多柔比星(DXR,產品編號 44583),利用磁鐵將藥物靶向傳遞到特定部位。49

體外細胞毒性測試

圖 3.體外細胞毒性試驗。(a) HCT-116 細胞與不同濃度的 CPT-11、SN38 及 NGO-PEG-SN38 培養 72 小時後的相對細胞存活率 (相對於未處理的對照) 數據。水溶性 NGO-PEG-SN38 在 DMSO 中顯示出與 SN38 相似的毒性,且效力遠高於 CPT-11。(b) HCT-116 細胞與含有 (紅色) 和不含 (黑色) SN38 的 nGO-PEG 培養後的相對細胞存活率資料。即使在非常高的濃度下,普通的 NGO-PEG 也沒有明顯的毒性。誤差條基於三重樣本。NGO = nGO。經參考 47 許可改編。版權所有 2008 美國化學會。

生物感測器

GO和rGO已被用作幾個系統的元件,這些系統旨在檢測生物相關分子。在利用螢光共振能量轉移 (FRET) 效應的生物感測器中,GO 已經被用作螢光淬滅材料。在 Lu 等人的一項研究中,帶有螢光標籤的單鏈 DNA (ssDNA) 被發現與 GO 非共价地結合,隨後標籤的螢光會被淬滅。50 加入互補的 ssDNA 可將標籤 DNA 從 GO 表面移除,並恢復螢光。51 Folic acid functionalized GO was used as a component in a system used to detect human cervical cancer and human breast cancer cells.52

我們提供高品質的氧化石墨烯產品,滿足您的創新和先進材料研究需求。如需可用的石墨烯和氧化石墨烯產品清單,請造訪 sigmaaldrich.com/nanocarbons.

材料
抱歉,發生意外錯誤。

Network error: Failed to fetch

參考資料

1.
Compton OC, Nguyen ST. 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 6(6):711-723. https://doi.org/10.1002/smll.200901934
2.
Mao S, Pu H, Chen J. 2012. Graphene Oxide and its Reduction: Modeling and Experimental Progress. RSC Adv.. 22643.
3.
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem. Soc. Rev.. 39(1):228-240. https://doi.org/10.1039/b917103g
4.
Novoselov KS. 2004. Electric Field Effect in Atomically Thin Carbon Films. Science. 306(5696):666-669. https://doi.org/10.1126/science.1102896
5.
Gilje S, Han S, Wang M, Wang KL, Kaner RB. 2007. A Chemical Route to Graphene for Device Applications. Nano Lett.. 7(11):3394-3398. https://doi.org/10.1021/nl0717715
6.
Chua CK, Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev.. 43(1):291-312. https://doi.org/10.1039/c3cs60303b
7.
Pei S, Cheng H. 2012. The reduction of graphene oxide. Carbon. 50(9):3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010
8.
Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. 2010. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater.. 22(35):3906-3924. https://doi.org/10.1002/adma.201001068
9.
Chen D, Feng H, Li J. 2012. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev.. 112(11):6027-6053. https://doi.org/10.1021/cr300115g
10.
Wan X, Huang Y, Chen Y. 2012. Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Acc. Chem. Res.. 45(4):598-607. https://doi.org/10.1021/ar200229q
11.
Eda G, Chhowalla M. Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater.. 22(22):2392-2415. https://doi.org/10.1002/adma.200903689
12.
Wan X, Long G, Huang L, Chen Y. 2011. Graphene - A Promising Material for Organic Photovoltaic Cells. Adv. Mater.. 23(45):5342-5358. https://doi.org/10.1002/adma.201102735
13.
Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem. Soc. Rev.. 41(2):666-686. https://doi.org/10.1039/c1cs15078b
14.
Lightcap IV, Kamat PV. 2013. Graphitic Design: Prospects of Graphene-Based Nanocomposites for Solar Energy Conversion, Storage, and Sensing. Acc. Chem. Res.. 46(10):2235-2243. https://doi.org/10.1021/ar300248f
15.
Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. 2008. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.. 1(3):203-212. https://doi.org/10.1007/s12274-008-8021-8
16.
Chung C, Kim Y, Shin D, Ryoo S, Hong BH, Min D. 2013. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res.. 46(10):2211-2224. https://doi.org/10.1021/ar300159f
17.
Wang Y, Li Z, Wang J, Li J, Lin Y. 2011. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology. 29(5):205-212. https://doi.org/10.1016/j.tibtech.2011.01.008
18.
Pyun J. 2011. Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology. Angew. Chem. Int. Ed.. 50(1):46-48. https://doi.org/10.1002/anie.201003897
19.
Yeh T, Syu J, Cheng C, Chang T, Teng H. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Adv. Funct. Mater.. 20(14):2255-2262. https://doi.org/10.1002/adfm.201000274
20.
Dreyer D, Jia H, Bielawski C. 2010. Inside Cover: Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions (Angew. Chem. Int. Ed. 38/2010). Angewandte Chemie International Edition. 49(38):6686-6686. https://doi.org/10.1002/anie.201003238
21.
Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. 2010. Graphene Oxide Sheets at Interfaces. J. Am. Chem. Soc.. 132(23):8180-8186. https://doi.org/10.1021/ja102777p
22.
Hummers WS, Offeman RE. 1958. Preparation of Graphitic Oxide. J. Am. Chem. Soc.. 80(6):1339-1339. https://doi.org/10.1021/ja01539a017
23.
Shin H, Kim KK, Benayad A, Yoon S, Park HK, Jung I, Jin MH, Jeong H, Kim JM, Choi J, et al. 2009. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater.. 19(12):1987-1992. https://doi.org/10.1002/adfm.200900167
24.
Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD. 2010. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C. 114(14):6426-6432. https://doi.org/10.1021/jp100603h
25.
Moon IK, Lee J, Ruoff RS, Lee H. 2010. Reduced graphene oxide by chemical graphitization. Nat Commun. 1(1): https://doi.org/10.1038/ncomms1067
26.
Pei S, Zhao J, Du J, Ren W, Cheng H. 2010. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 48(15):4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006
27.
Su C, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai C, Huang Y, Li L. 2010. Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano. 4(9):5285-5292. https://doi.org/10.1021/nn101691m
28.
Wang S, Ang PK, Wang Z, Tang ALL, Thong JTL, Loh KP. 2010. High Mobility, Printable, and Solution-Processed Graphene Electronics. Nano Lett.. 10(1):92-98. https://doi.org/10.1021/nl9028736
29.
Lu G, Park S, Yu K, Ruoff RS, Ocola LE, Rosenmann D, Chen J. 2011. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano. 5(2):1154-1164. https://doi.org/10.1021/nn102803q
30.
Chen K, Lu G, Chang J, Mao S, Yu K, Cui S, Chen J. 2012. Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles. Anal. Chem.. 84(9):4057-4062. https://doi.org/10.1021/ac3000336
31.
He Q, Wu S, Yin Z, Zhang H. 2012. Graphene-based electronic sensors. Chem. Sci.. 3(6):1764. https://doi.org/10.1039/c2sc20205k
32.
He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H. 2010. Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano. 4(6):3201-3208. https://doi.org/10.1021/nn100780v
33.
He Q, Wu S, Gao S, Cao X, Yin Z, Li H, Chen P, Zhang H. 2011. Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors. ACS Nano. 5(6):5038-5044. https://doi.org/10.1021/nn201118c
34.
Cai B, Wang S, Huang L, Ning Y, Zhang Z, Zhang G. 2014. Ultrasensitive Label-Free Detection of PNA?DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano. 8(3):2632-2638. https://doi.org/10.1021/nn4063424
35.
Liu Y, Yu D, Zeng C, Miao Z, Dai L. 2010. Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir. 26(9):6158-6160. https://doi.org/10.1021/la100886x
36.
Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson ND. 2010. Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS Nano. 4(2):637-642. https://doi.org/10.1021/nn9018569
37.
Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. 2008. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano. 2(3):463-470. https://doi.org/10.1021/nn700375n
38.
Saha SK, Bhaumik S, Maji T, Mandal TK, Pal AJ. Solution-processed reduced graphene oxide in light-emitting diodes and photovoltaic devices with the same pair of active materials. RSC Adv.. 4(67):35493-35499. https://doi.org/10.1039/c4ra03913k
39.
Li S, Tu K, Lin C, Chen C, Chhowalla M. 2010. Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano. 4(6):3169-3174. https://doi.org/10.1021/nn100551j
40.
Wang H, Cui L, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H. 2010. Mn3O4?Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc.. 132(40):13978-13980. https://doi.org/10.1021/ja105296a
41.
Yang S, Feng X, Ivanovici S, Müllen K. 2010. Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage. Angew. Chem. Int. Ed.. 49(45):8408-8411. https://doi.org/10.1002/anie.201003485
42.
Lee JK, Smith KB, Hayner CM, Kung HH. 2010. Silicon nanoparticles?graphene paper composites for Li ion battery anodes. Chem. Commun.. 46(12):2025. https://doi.org/10.1039/b919738a
43.
Zhou G, Wang D, Li F, Zhang L, Li N, Wu Z, Wen L, Lu GQ(, Cheng H. 2010. Graphene-Wrapped Fe3O4Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chem. Mater.. 22(18):5306-5313. https://doi.org/10.1021/cm101532x
44.
Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T. 2010. Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater. Chem.. 20(26):5538. https://doi.org/10.1039/c0jm00638f
45.
Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, et al. 2011. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science. 332(6037):1537-1541. https://doi.org/10.1126/science.1200770
46.
Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. 2010. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon. 48(7):2118-2122. https://doi.org/10.1016/j.carbon.2010.02.001
47.
Liu Z, Robinson JT, Sun X, Dai H. 2008. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc.. 130(33):10876-10877. https://doi.org/10.1021/ja803688x
48.
Jung HS, Kong WH, Sung DK, Lee M, Beack SE, Keum DH, Kim KS, Yun SH, Hahn SK. 2014. Nanographene Oxide?Hyaluronic Acid Conjugate for Photothermal Ablation Therapy of Skin Cancer. ACS Nano. 8(1):260-268. https://doi.org/10.1021/nn405383a
49.
Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. 2009. Superparamagnetic graphene oxide?Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem.. 19(18):2710. https://doi.org/10.1039/b821416f
50.
Lu C, Yang H, Zhu C, Chen X, Chen G. 2009. A Graphene Platform for Sensing Biomolecules. Angew. Chem. Int. Ed.. 48(26):4785-4787. https://doi.org/10.1002/anie.200901479
51.
Wang Y, Li Z, Hu D, Lin C, Li J, Lin Y. 2010. Aptamer/Graphene Oxide Nanocomplex forin SituMolecular Probing in Living Cells. J. Am. Chem. Soc.. 132(27):9274-9276. https://doi.org/10.1021/ja103169v
52.
Song Y, Chen Y, Feng L, Ren J, Qu X. 2011. Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem. Commun.. 47(15):4436. https://doi.org/10.1039/c0cc05533f
登入以繼續

若要繼續閱讀,請登入或建立帳戶。

還沒有帳戶?

為便利客戶閱讀,此頁面中文以機器翻譯完成。雖然我們已盡力確保機器翻譯的準確性,但機器翻譯並非完美。如果您對機器翻譯的內容不滿意,請參考英文版本。