跳轉至內容
Merck

MSI 測試和 IHC

MSI測試

結腸直腸癌是大多數西方國家居民的常見癌症,僅次於肺癌。1 儘管手術技術和化學治療方案有所改善,但過去幾十年來這種疾病的預後卻沒有顯著改善。

儘管飲食因素在病因學研究中得到了很好的研究2 ,但該疾病最可預測的風險因素--遺傳傾向卻受到了有限的關注。3 例如,許多醫師認為家族性腺瘤性息肉病 (FAP) 是唯一與結腸直腸癌病因有關的遺傳風險因子。3,4

遺傳性非息肉病結直腸癌 (HNPCC) 或林奇症候群 (Lynch Syndrome) 是一種常染色体显性症候群,佔結直腸癌總數的 5 到 10%。5 由於缺乏特徵性的診斷特徵,因此引進了某些標準來確立這項診斷:(a) 至少三個親屬(其中一個是另外兩個親屬的一等親屬)經組織學證實患有結腸直腸癌,(b) 至少連續兩代出現疾病,(c) 50 歲前診斷出一個或以上的結腸直腸癌病例。5-7

HNPCC的典型特徵包括在相對年輕時就有結腸直腸癌(CRC)家族史、以近端腫瘤為主,以及有同步或隔代多種原發性腫瘤的傾向。某些類型的結腸外腫瘤也與此病有關,例如子宮內膜、卵巢、胃、小腸、肝膽道、胰臟、腦部和泌尿道的腫瘤。

微星測試

圖 1. PMS2 (EPR3947†) - 結腸腺癌。注意腺癌細胞、正常隱點細胞和固有膜淋巴細胞的核標記。

歷史

Henry T. Lynch 在診治一位沒有明顯息肉病的 CRC 病史的病人時,發現了這種疾病,並最終以他的名字命名。29,30 Lynch在1966年發表的 「癌症的遺傳因素」(Hereditary factors in cancer)一文中,以該患者家族的世系分析為基礎。17 Lynch和Krush在1971年發表的家族更新,包含了超過650個家族成員的資料。其中指出許多該症候群的顯著特徵:(1) 腺癌發病率增加,主要是結腸癌和子宮內膜癌;(2) 罹患多種腫瘤的風險增加;(3) 常染色體顯性遺傳;(4) 早發性癌症。10 儘管Lynch和Krush的洞察力很強,但他們的觀點卻受到科學界的廣泛質疑,因為當代的思維主要是認為環境因素是癌症的主要決定因素。

遺傳性非息肉病結直腸癌 (HNPCC) 基因篩檢建議

圖 2. 遺傳性非息肉病大腸癌 (HNPCC) 基因篩檢建議。

Lynch 的觀點慢慢受到重視,尤其是在國際社會,最終組織了 「遺傳性非息肉病大腸癌國際合作小組」,由 「來自 8 個不同國家的 30 位頂尖專家 」組成。該小組於 1990 年夏天在阿姆斯特丹舉行會議。該會議的主要成果是制定了一系列臨床標準(現稱為阿姆斯特丹標準,俗稱「3-2-1」規則),作為未來研究的共同起點:(1) 至少有 3 位親屬罹患組織學確診的結腸直腸癌,其中 1 位是另外 2 位的直系親屬;家族性腺瘤性息肉病應排除在外;(2) 至少連續 2 代涉及;(3) 至少有 1 種癌症是在 50 歲之前診斷出來的。19 阿姆斯特丹標準 (AC) 在 1998 年的團體會議中更新,確認了結腸外腫瘤 (即子宮內膜、小腸、輸尿管、& 腎盂) 子集的重要性。這些修訂的 AC-II 見於 表 1。

阿姆斯特丹準則 II:HNPCC 家族臨床標準* (表 1)

  • ≥3名親屬患有 HNPCC 相關癌症**
  • ≥連續 2 代受影響
  • ≥1名於 50 歲前診斷
  • 1人應為另2人的一等親
  • 應排除家族性腺瘤性息肉病
  • 腫瘤應經病理檢查確認

胃腸病。1999;116:1453-1456.2

**必須符合所有標準。

***結腸直腸癌、子宮內膜癌、小腸癌、輸尿管癌或腎盂癌。HNPCC 表示遺傳性非息肉病性大腸癌。

林奇症候群的分子遺傳基礎,在 1993 年到 1994 年間的一連串快速報告中,已大致闡明。Peltomaki 及其同事將這種疾病(在 2 個符合原始 AC 的大型種族中)與染色體 2p 上的一個位點聯繫起來。接著,三個研究小組獨立報告了 CRC 的特殊分子表型,其特徵是簡單重複序列長度的廣泛改變,這些研究小組將此現象分別稱之為「複製錯誤 (RER)」、「MSI」和「簡單重複序列中無處不在的體質突變」。Aaltonen 等人31 在 11/14 (79%) 個「遺傳性非息肉病結腸癌 (HNPCC) 腫瘤」和 6/46 (13%) 個散發性 CRC 中發現 RER 陽性表型。散發性 RER+ 腫瘤與 HNPCC 病例一樣,都是以右側腫瘤居多,且接近二倍體狀態。Thibodeau et al.32 在 25/90 (28%) 個 CRC 中發現某種程度的 MSI,並將此現象與近端位置及存活率改善聯繫起來,並顯示與雜合性遺失有反向關係。142 1993 年底,2p 上的相關基因 MSH2 已被克隆,並在 Lynch 家族中發現種系突變。33,34 第二個疾病位點與 3p 相連,到 1994 年初,在 Lynch 家族中發現了 MLH1 基因突變。38-40 在接下來的 15 年中,這些知識被應用於更好地瞭解疾病的發病率和表型,以及探索檢測和管理的臨床問題。在這段期間,特別值得注意的是美國國家癌症研究所 (NCI) 贊助的兩次研討會,專門針對鑑定哪些患者可從林奇症候群臨床檢測中獲益而頒布指引 (「Bethesda 指引」)。

錯配修復

42,43 人類的 MMR 基因是以其原核生物的對應基因命名的。例如,MSH2 是 "MutS homologue 2''("mut''指的是喪失 MutS 功能的細菌菌株中普遍存在的高突變性)。MMR 蛋白具有異二聚體的功能。MSH2-MSH6 複合體可辨識錯誤接合的基序和插入/缺失迴圈。43 MSH2和MLH1是各自配對的主要(義務)組成部分。在缺乏 MSH6 時,MSH2 可與 MSH3 配對,而在缺乏 PMS2 時,MLH1 可與 PMS1 配對。

修訂的 Bethesda Guidelines:
  • 診斷出結腸直腸腫瘤的患者年齡為 50 歲
  • 診斷為具有 MSI-H 組 織學的 CRC 的患者為 <;60 歲****
  • 在 Z1 一親等親屬中診斷出患有 HNPCC 相關腫瘤的 CRC,且其中一個癌症是在 <50 歲時診斷出的
  • Z2一等親或二等親中診斷出患有HNPCC相關腫瘤的CRC,不論年齡

J Natl Cancer Inst.2004;96:261-268.3

*僅滿足 1 項必要條件即可進行臨床測試。

****HNPCC 相關腫瘤在此定義為結腸直腸、子宮內膜、胃、卵巢、胰臟、輸尿管和腎盆、膽道、腦(膠質母細胞瘤)、皮膚(皮脂腺瘤和角化棘皮瘤)和小腸。

****腫瘤滲透淋巴細胞、克隆樣反應、黏液/印戒分化或髓狀生長型態。CRC 表示大腸癌;HNPCC 表示遺傳性非息肉病性大腸癌;MSI 表示微卫星不穩定性。

55 歲男性結腸腺瘤中的 MLH1 (G168-728);腺瘤細胞的核標記

圖 3.55 歲男性結腸腺瘤中的 MLH1 (G168-728);腺瘤細胞的核標記。

MSH6和PMS2蛋白在缺乏各自的顯性伴侶時是不穩定的。50 此外,Lynch突變大多數是無義或移框突變,導致蛋白質截短(不穩定);錯義突變可能會破壞所產生的mRNA或蛋白質的穩定性,或干擾蛋白質與蛋白質之間的相互作用。51 MMR蛋白的這些特徵與MMR免疫組織化學(IHC)的詮釋("臨床測試'')有關,具有臨床診斷的影響。

微卫星不稳定性

微卫星是散布在基因组中的简单重复 DNA 序列,由 1 到 6 个碱基对单位组成,可重复多达 100 次。由於它們在 DNA 複製過程中容易發生鏈滑移,因此本身具有高可變異性。糾正所產生的插入/缺失迴圈需要 DNA MMR 系統的完整功能。當 MMR 功能喪失時,插入/缺失迴圈就無法修復,造成微卫星的擴大或收縮不一。這種現象稱為 MSI(在 MSI 測試中顯示為凝膠上的典型帶狀或序列分析儀上的峰值)。在關鍵區域含有簡單重複序列的基因也容易受到這種現象的影響。52-55 因此,MSI-H腫瘤被描述為展現「突變者表型」(mutator phenotype'')。

1997 年 NCI 研討會建立了一個微卫星參考面板,用於臨床和研究測試,並定義了 MSI-H、MSI-L 和 MSS 表型的診斷標準。核心小組包括 2 個單核苷酸重覆位點 (BAT25, BAT26) 和 3 個雙核苷酸重覆位點 (D5S346, D2S123, D17S250)。此外,還提供 19 個「替代位點」。分析 5 個位點時,MSI-H 定義為 2 個位點的不穩定性,MSI-L 定義為 1 個位點的不穩定性。當研究超過 5 個位點時,MSI-H 定義為 30% 到 40% 的測試位點不穩定,MSI-L 定義為 30% 到 40% 的測試位點不穩定。56 2002年的NCI研討會補充了這些準則,建議在只有二核苷酸位點不穩定的腫瘤中測試額外的單核苷酸標記,因為單核苷酸標記在鑑定MSI-H腫瘤中更為可靠。12

組織學

Mecklin et al.41 於 1986 年首次報告「CFS」(癌症家族症候群)患者 CRC 和腺瘤的系統組織學評估,比 MSI 和 Lynch 綜合症遺傳基礎的認知早了 7 年。他們注意到病例中黏液性癌的發生率較散發性對照組的高 (39% 對 20%)。分化不良的腫瘤也較常見 (24% 對 12%),但此結果未達統計顯著性。雖然兩組患者的腺瘤數量相似,但 CFS 患者的腺瘤傾向於包含更高等級的發育不良及更多的絨毛組織成分,顯示它們更為「晚期」。從那時起,一系列的腫瘤類型和組織學特徵都與 Lynch 綜合症和 MSI-H CRC 相關:黏液性、錫蘭環狀細胞和髓樣癌、腫瘤浸潤和腫瘤周圍淋巴細胞、「類似 Crohn」的發炎反應、分化差、腫瘤異型和「推進式」腫瘤邊界。24,26,41,57-63 Greenson et al.24,26,41,57-63 Greenson等人進一步強調任何黏液成分的存在、缺乏骯髒的壞死以及分化良好的腫瘤與MSI-H狀態相關。

按照慣例,黏液腺癌被定義為由>50%黏液組成的腫瘤,而印戒細胞腺癌被定義為含有>50%印戒細胞的腫瘤。黏液腺癌中的黏蛋白主要在細胞外,而招牌環細胞則含有突出的胞質內黏蛋白,通常會將細胞核移位到細胞的一側。64 髓樣癌的特徵是具有一組細胞結構特徵,包括細胞體積大、泡狀染色質和突出的核小體、片狀至偶爾小梁狀生長,以及整體周圍性。腫瘤浸潤淋巴細胞 (TIL) 在這種腫瘤類型中尤其突出。64

TILs 指的是與腫瘤密切混雜的淋巴成分;已證實它們主要由 CD3/CD8 共同表達的細胞毒性 T 細胞組成 [推測它們的突出代表了:(1) 對大量腫瘤的反應:(1)因「突變表型」而形成的大量腫瘤新抗原的反應;(2)MSI-H 腫瘤預後改善的可能基礎]。59 已經有多種計數 TILs 的方法(和臨界值)被報導,包括評估蘇木紅和伊紅或 CD3 免疫染色的切片。一種實用的方法是掃描玻片上有 TIL 的區域,計數 5 個連續的 40 倍視野,並計算 TIL/高倍視野 (HPF) 的平均數目;使用此方法的研究將陽性結果定義為 >2個 TIL/HPF。62 腫瘤周圍淋巴細胞指的是腫瘤前緣的淋巴袖帶,而 "Crohn 類''反應則是由"突出''的結節狀淋巴聚集在腫瘤的浸潤邊緣,通常在固有肌和包膜脂肪組織的交界處被發現。Crohn 類''反應陽性的臨界值包括 「在切片中有 2 個或更多的大淋巴聚集」、"單一 4 倍視野中至少有 3 個淋巴細胞結節狀聚集"、「每張切片至少有 3 個淋巴聚集」,以及 "低倍視野 (4 倍) 中至少有 4 個結節狀聚集。"26,61,62,65

腫瘤一般分為良好、中度或分化不良。世界衛生組織的標準指出,具有異質分化型態的腫瘤應根據最高等級的成分來分類,但有一個重要的注意事項,就是腫瘤前緣的分化不良灶(即腫瘤出芽、上皮-間質轉換)不足以將腫瘤歸類為分化不良。64 腫瘤異質性指的是腫瘤內有 2 種或以上不同的生長型態;Alexander 及其同事提供了一個具有黏液性與髓樣性混合特徵腫瘤的例子。65  「推進性 」或 「擴散性 」腫瘤邊緣可與 「浸潤性 」邊緣區別;這項評估最好在低功率下進行。

臨床檢測

CRC中dMMR功能的臨床檢測有2個潛在的終點:(1)鑑定Lynch症候群;或(2)鑑定所有MSI-H CRC,並與2個基本篩檢策略相關:(1)根據臨床和/或病理學標準選擇患者進行檢測;或(2)檢測所有CRC。有鑑於此,AC 和 BG 已在以人口為基礎的群組中評估其識別 LS 患者的能力。一般而言,AC-II 的敏感度約為 40% 到 50% 之間,而修訂後的 BG 則約為 90%。13-16,20-23,71 應該強調的是,這些測試特徵是在理想化的環境下達到的,芬蘭的研究人員可以使用全國癌症登記,而其他研究人員則描述使用「醫院臨床遺傳學家」和「詳細的問卷調查」。72

目前臨床指引的其他限制包括:對於較小的家族以及例行結腸鏡篩檢會改變疾病自然史的族群,其靈敏度較低。很明顯,這些策略並未針對較大的 MSI-H CRC 人群。

如果 MSI-H 狀態的預測意義(即治療相關性)能在前瞻性、隨機對照臨床試驗中獲得確實證明,那麼以 MSI-H 為終點的「檢測所有 CRC」策略就應該成為照護的標準。

由於林奇綜合症的非定向種系突變測試非常昂貴(約1000美元/基因),MSI測試和MMR IHC已被評估為篩檢測試。MSI 測試包括在匹配的腫瘤和正常組織 (通常是鄰近的非腫瘤性結腸或周邊血液) 中,以 PCR 為基礎檢驗微小衛星標記的組合。它需要微切片和分子診斷實驗室的服務。其無法提示特定基因進行突變分析是一個明顯的缺點,而且如果進一步的檢測只限於 MSI-H 的病例,在鑑別 MSH6 突变所導致的 LS(可能呈現為 MSI-L CRC)時,其靈敏度也可能略低於 IHC。74

IHC 在大多數的解剖病理診斷實驗室都很容易取得。與 LS 有關聯 (透過相關基因的種系突變) 的 4 種蛋白質的抗體可在市面上買到。異常結果是腫瘤中一種或多種蛋白的核免疫活性完全缺失(喪失)。所有 4 種蛋白質在非腫瘤組織中均正常表達,因此基質、淋巴細胞及非腫瘤隱窩可作為重要的內部對照。98 偶爾會遇到染色弱或不均勻的情況,可能是由於組織固定的差異或其他技術因素。在這些情況下,重複 IHC 可能會有幫助。在 Lynch 篩檢中使用 IHC 的主要優點在於它能直接進行基因測試。MSH2 功能喪失 (由於有害突變) 表現為 MSH2 和 MSH6 缺乏免疫組織化學 (IHC) 表達,而 MLH1 功能喪失 (由於有害突變或啟動子超甲基化) 則可偵測到 MLH1 和 PMS2 缺乏免疫組織化學表達。MSH6或PMS2蛋白的單獨缺失提示各自基因的突變。

MMR IHC和MSI測試的結果已被證實在很大程度上是一致的。15,16,22,23,47,48,76-84 在1項大型研究中,結合使用MLH1和MSH2 IHC鑑定MSI-H腫瘤的敏感性達到92.3%,特異性達到100%(共檢測1144例,其中302例為MSI-H)。77 將 MSH6 和 PMS2 加入檢測組應可進一步提高敏感度,因為 MSH6 和 PMS2 基因突變在相當少數的 Lynch 病例中日益被認定為病因。44,45,47,48,79 IHC的一個潛在缺點是無法檢測出未能使mRNA或蛋白質不穩定的錯義突變。83 根據我們的經驗,IHC分析可辨識90%的LS和MSI-H CRC病例;MSI檢測對於識別LS也同樣敏感。15,16,21-23,82 在出現 MLH1 蛋白表達缺失(喪失)的腫瘤中,在進行 MLH1 基因突變分析之前,可能還需要進行額外的測試:MLH1啟動子甲基化測試和/或BRAF突變分析。如前所述,這些測試都是利用散發性 MSI-H CRC 的獨特發展史。在第一種情況中,甲基化特異性 PCR 用來判定 MLH1 啟動子的甲基化狀態。甲基化的病例很可能是散發性的,因此可能不需要進行 MLH1 基因突變分析。有一個重要的注意事項。雖然在大多數的 LS 中,"second-hit''"是雜合性遺失或體質突變,但在罕見的病例中,也有 MLH1 啟動子超甲基化的描述。27,28,68,85,86 It is also more expensive than BRAF analysis, as well as technically challenging.

BRAF是Ras/Raf/MAP激酶通路的組成部分,其體質活化突變發生在各種人類腫瘤中,包括15%的CRC。143

它們常見於無柄鋸齒狀腺瘤和散發性 MSI-H CRC (約 75%),並被視為其進化關係的證據。28,66-69,70 大多數的突變都是由點突變造成的,即在第 600 個代碼處以谷氨酸取代纈氨酸 (V600E);在一項 CRC 研究中,60/63 (95%) 的突變都是 V600E。66 因此,若 CRC 中出現 BRAF V600E,則支持該病例為散發性病例的解釋,且一般不會進行 MLH1 基因突變分析。73

偶爾會有人要求評估「可能有林奇症候群」患者的腺瘤,在有強烈家族史的情況下,腫瘤組織無法進行分析。25,87,88 Halvarsson等人87 報告了26名 "HNPCC''患者(其中88%已證實有種系MMR突變)的23/35(66%)腺瘤中MMR蛋白的喪失表達。染色缺失尤其常見於 5mm 大小的腺瘤 (88%)。19 個顯示 MMR 蛋白質缺失的腺瘤只包含典型的低度發育不良。

在這種臨床環境中出現的缺失染色必須與無柄鋸齒狀腺瘤伴有疊加細胞學異常(SSAD)(一般認為是散發性 MSI-H CRC 的前兆)中出現的缺失染色區別開來。89 病變的結構和缺失模式是重要的考慮因素。SSADs 有鋸齒狀(LS 中的腺瘤幾乎總是沒有鋸齒狀),可能顯示 MLH1 和 PMS2(不是 MSH2 和/或 MSH6)的合併喪失,而且,表達喪失通常被認為是晚期事件,經常與侵襲相對應(而表達喪失則常見於僅有低度發育不良的 LS 腺瘤)。

顯示有害的生殖突變是診斷 Lynch 綜合症的 「金標準」。它允許對家族成員進行相對便宜的定向生殖系分析。然而,以下幾點需要考慮。一般而言,突變分析是從外周血樣本進行,包括牽連基因的外子和內子-外子邊界的序列分析。Most reported pathogenic mutations are nonsense or frameshift, resulting in a truncated protein; missense mutations are more difficult to classify.51 Large deletions may account for up to 20% of pathogenic mutations, and these are not detected with routine sequencing.多重結合依賴探針擴增 (Multiplex ligation-dependent probe amplification, MLPA) 提供外顯子劑量的定量測量,被認為是檢測大缺失的首選方法。90-93 LS 有數百種已描述的突變,突變分析相當複雜,而且檢測的敏感度雖然持續改善,但仍低於 100%。在有令人信服的家族史的情況下,即使無法證實具有明確致病性的種系突變,也不應將患者排除在 LS 適當的監測範圍之外。林奇症候群突變資料庫由國際胃腸道遺傳性腫瘤協會 (International Society for Gastrointestinal Hereditary Tumors) (前身為遺傳性非息肉病結直腸癌國際合作小組 (International Collaborative Group on Hereditary Non Polyposis Colorectal Cancer))維護。

MSH6 (44) - 腺癌細胞和正常隱窩上皮細胞的核標記。

圖 4. MSH6 (44) - 腺癌細胞和正常隱窩上皮細胞的核標記。

PMS2 (EPR3947†)- 注意隱管上皮細胞正常的核標記

圖 5. PMS2 (EPR3947†)-請注意右側隱嵴上皮細胞(以及固有膜中散在的淋巴細胞)有正常的核標示,而左側腺癌細胞沒有核標示,代表測試陽性 (MSI-H)。

結腸直腸癌錯配修復缺陷的診斷意義

獲得MMR缺陷賦予腫瘤細胞的選擇性優勢是有爭議的,可能部分與凋亡易感性的改變有關。95,96,97,98 甚至在最初描述MSI時就注意到,那些患有MSI-H腫瘤的病人似乎比患有MSS腫瘤的病人有更好的存活率。21 自此之後,有許多研究探討 MSI-H 在 CRC 的預後意義,其中大部分同意最初的發現,99-102 尤其是年輕病患,也有少數研究無法確定 MSI 狀態是獨立的預後因子。103,104 在MSI-H腫瘤中,活化的上皮內細胞毒性T淋巴細胞的高流行率以及腫瘤細胞凋亡的增加,明顯支持MSI狀態的預後價值。99,101 前一項特徵可能歸因於 MSI-H 腫瘤產生新的免疫原表位的固有能力(如果 B2M 和 HLA Ⅰ類位點完好,這些新的抗原可以呈現),這可以解釋為什麼有些 MSI-H 腫瘤患者在有效的抗腫瘤免疫反應後,會有特別好的臨床結果。

在選擇 CRC 患者接受輔助化療方面,也評估了 MSI-H 的預測意義。已顯示的主要相關性是完整的 MMR 系統識別 5-氟尿嘧啶 (5FU) 誘發的 DNA 病變105-107 導致 MMR 缺乏的細胞比 MMR 豐富的細胞對 5-FU 更有抵抗力。108 然而,MSI-H作為化療反應預測因子的明確作用仍存在爭議。109-111

儘管分子診斷實驗室可以相對容易地進行 MSI 測試,但對於 MSI-H 作為散發性 CRC 預後標誌的臨床效用仍有疑問。112,113 未能達成共識的一個重要因素是不同研究評估的微小衛星標記的類型和數量存在差異。一項以>7000名病患為對象的大型薈萃分析114顯示,MSI-H腫瘤與整體存活率改善有明顯的關係。然而,這項研究是回顧性進行的,因此可能會受到各種混淆因素的影響。也有可能 LS 腫瘤和散發性 MSI-H 腫瘤的基本分子通路存在差異,如 表 1中的突變頻率資料所示,這也是其中的原因之一,因此 LS 腫瘤和散發性 MSI-H 腫瘤之間可能存在重要差異,但結合其資料後卻被掩蓋了。

遺傳性非息肉病結腸癌的遺傳諮詢及管理

在決定做遺傳測試和開始監測計畫的適當時間時,應考慮發病年齡和結腸癌的自然史。10 In Mecklin's series in Finland119, the average age of colon carcinoma onset was 41 years, with an age range of 19 to 83 years; the gene penetrance was estimated as 89%. 10 In Mecklin's series in Finland119, the average age of colon carcinoma onset was 41 years, with an age range of 19 to 83 years; the gene penetrance was estimated as 89%.在內布拉斯加州的 Lynch 系列中,診斷時的平均年齡為 44.4 歲。117,120 大部分腫瘤在 60 歲前發生,高峰期在 40-50 歲之間。8,117 大多數 HNPCC 患者都有兩個 DNA 錯配修復基因之一 (hMSH2 或 hMLH1) 的突變。121,122;這些腫瘤很多都有複製錯誤。144 對於那些攜帶突變的高風險患者,例如符合阿姆斯特丹標準 I 或 Bethesda 指南前三個標準的患者,可以接受初始生殖系檢測。123 任何有另一種 CRC 或子宮內膜癌的個人或家族史,或在 50 歲之前診斷出的 CRC 患者,不論其個人或家族史為何,都符合修訂後的準則。

在大型研究12,29 中,比較了幾種 HNPCC 患者基因檢測策略的成本效益,結果顯示,對符合阿姆斯特丹標準的 CRC 疑似患者進行種系檢測,可檢測出最少的基因攜帶者,且成本較低;而對所有 CRC 患者進行腫瘤 MSI 檢測,成本最高,且可檢測出最多的基因攜帶者。此外,有研究顯示,對符合阿姆斯特丹標準的病患進行生殖系 hMSH2/ hMLH1 檢測,並對符合修正標準的其餘病患進行腫瘤 MSI 分析,然後再對具有 MSI-H 腫瘤的病患進行生殖系檢測,就成本效益而言是最佳的策略。122 如果患者符合阿姆斯特丹標準I或被懷疑屬於HNPCC家族, 第一個篩檢測試應該是免疫組織化學檢測hMLH1和hMSH2蛋白。123

免疫組織化學使用石蠟包埋的組織塊進行,組織塊以 Mayer 蘇木精反染色。當 hMLH1 和 hMSH2 蛋白表達時,會在細胞核上呈陽性染色。微卫星分析通常使用 PCR DNA 分析。評估幾個位點,例如 BAT26、TGF-RII、D2S119、D3S1612、D5S404、D17S261、BAT25、D2S123、D5S346 和 D17S250。腫瘤 DNA 鏈與正常 DNA 在相鄰的泳道中進行比較。124 如果免疫組織化學呈陽性,則應進行直接逐外显子基因組測序,以檢測 hMSH2 或 hMLH1 基因突變。最常發生的兩個突變是創始突變 1(MLH1 的基因組缺失,包含第 16 個外元)和創始突變 2(MLH1 第 6 個外元剪接位點突變 IVS5-1G "A at 454-1.125

如果檢測結果陰性,則應隨後進行 MS 分析。若後者為陰性,則不需再做其他檢查。如果是陽性,則應該接著做 MLH1 和 MSH2 的突變分析,方法是對編碼外子(包括側邊的內含子區和啟動子區124-126 (圖 2)進行測序。這三種方法都不能單獨用於 HNPCC 的基因診斷。應將這些方法與家族史結合使用。Southern 印迹分析也應作為補充測試,以揭示基因組的嚴重重排。120 分子評估過程包括標準和替代突變檢測技術(表 3)。

應向患者說明 HNPCC 的自然病史,並分析可用監測和管理策略的優點。6 患者必須意識到,陽性結果可能會在家庭中產生恐懼和焦慮。HNPCC 家族中的某些成員可能已經因為家族中有多人死於癌症而承受著無法排解的悲痛。120

所有這些高風險人士都應被告知,HNPCC 的癌症發病年齡趨向於早期,但也可能是可變的,因此在他們的有生之年都應持續監測。由於 HNPCC 會加速結腸直腸腺瘤向癌的演變,115,121 患者應每年接受結腸鏡評估,以降低罹患晚期癌症的風險。119

分子評估的過程 (表 3)

標準突變偵測技術

  1. 單鏈構象多態性
  2. 變性梯度凝膠電泳分析
  3. DNA測序

替代突變檢測技術

  1. 單倍體表達分析
  2. Southern 分析
  3. 定量聚合酶鏈反應

高風險 HNPCC 家族成員的基因諮詢應從十多歲開始。在平均發病年齡有提前趨勢的家族中,應從 25 歲開始監測。由於右側病變居多,因此對整個大腸進行結腸鏡檢查是監測 HNPCC 的主要方法。7,116 在經驗豐富的醫師手中,幾乎 95% 的病例都可以檢查到盲腸,而穿孔率不超過 0.2%。10 結腸鏡檢查也提供了取得組織學樣本和切除息肉的能力。進行監測直到 60 歲為止,如果屆時仍未出現該症候群的表型表徵,則依據美國癌症協會針對一般人口的結腸直腸癌風險所提出的建議,對病患進行追蹤。內視鏡發現黏膜嚴重發育不良或扁平腺瘤時,應在 6 個月後再次接受大腸鏡檢查。127  在結腸外部位有癌症病史的家族中,監測包括巴氏塗片、經陰道卵巢超音波檢查,以及從 30 歲後開始每 1 到 2 年進行一次子宮內膜抽吸活檢。泌尿系統癌症的篩檢應每 1 到 2 年進行一次,包括尿液分析、超音波、膀胱鏡檢查和尿液細胞學。對於胃癌和膽管癌,應從 30 歲開始每 1 到 2 年進行一次食道胃十二指腸鏡檢查、肝功能測試和經腹肝膽超音波檢查。5

已知基因攜帶者或有家族史的高風險患者新診斷結腸直腸癌時,由於移行性病變的風險較高,因此應選擇結腸次全切加回直腸吻合術。5,120,128,129 由於結腸直腸癌的風險接近 80-85%,因此已採用預防性結腸切除術。77 應每年對剩餘的直腸進行內視鏡檢查。131 另一種方法是進行直腸切除術,尤其是 hMSH2 基因攜帶者,他們罹患直腸癌的風險比 hMLH1 基因攜帶者高。年紀較大的病患131 或有併發疾病的病患,其預期壽命已因既有疾病而受損,則建議進行分段切除。經陰道超音波篩檢是首選的監測方法,它是一種非侵入性、容易取得的測試,可全面檢查子宮內膜腔。其他監測方法包括子宮內膜細胞學取樣術及子宮內膜活檢。在 Lynch 綜合症 II 中,容易罹患子宮內膜癌的婦女,若已完成家事或已停經,則應考慮進行全腹子宮切除術,同時進行雙側輸卵管切除術。5,120,127,132,133

醫生應花時間告知病人這種遺傳性癌症症候群的自然史,討論他們對癌症的恐懼和焦慮,並告知他們基因檢測的利弊。

預後

數個中心對接受 CRC 治療的 HNPCC 患者進行長期追蹤的整體經驗令人鼓舞。118,119,134,135 1996 年,Sankila et al.136 1996 年,Sankila 等人研究了 175 名 HNPCC 患者,並將他們的存活率與 14,086 名散播性結直腸癌患者進行了比較。136 該綜合症的診斷基於錯配修復基因的種系突變檢測。HNPCC 患者的 5 年存活率為 65%,散發病例則為 44%。一年後,Watson 等人137 提供了更多關於 HNPCC 患者預後的資料。他們回顧性地研究了一批 HNPCC 患者,並將他們與散發性結腸直腸癌患者進行比較。他們發現在確診後的前 10 年,HNPCC 病例的死亡率幾乎是散發性癌症患者的三分之二。最近,Surveillance, Epidemiology, and End Results (SEER) 癌症登記中心也發表了類似結果;經年齡調整後,HNPCC 結腸直腸癌攜帶者的存活率比散播性結腸直腸癌患者高。138,139 HNPCC患者和早期癌症患者的預期壽命比散發性病例高三分之一;然而,在診斷時,預期壽命會隨著晚期階段的增加而減少。140

這些發現的生物學基礎尚未闡明。141 因此,惡性細胞的基本功能,尤其是其轉移潛力,可能會因為非常顯著的突變負荷而受到抑制。此外,基因與基因、基因與環境之間的互作可能在 HNPCC 的自然史中扮演重要角色。對受影響的患者進行系統性監測和個別設計的治療,可能有助於在早期階段發現癌症,進而進一步改善疾病的預後情況。

相關產品
抱歉,發生意外錯誤。

Network error: Failed to fetch

參考文獻

1.
Nischan P. 1983. Cancer Incidence in Five Continents. Vol. IV. Herausgegeben von J. Waterhouse, C. Muir, K. Shanmugaratnam und J. Powell. 812 Seiten, 146 Abb., 354 Tab. (IARC Scientific Publications No. 42). IARC, Lyon 1982. Preis: 100,- Sw.fr.; 50,- $. Nahrung. 27(9):846-846. https://doi.org/10.1002/food.19830270910
2.
Whittenmore AS, Zhong S, Wu A. 1985. Colorectal cancer in Chinese and Chinese-Americans. NCI Monogr. 6943-55.
3.
Lynch HT, Bronson EK, Strayhorn PC, Smyrk TC, Lynch JF, Ploetner EJ. 1990. Genetic diagnosis of Lynch syndrome II in an extended colorectal cancer-prone family. Cancer. 662233-2238.
4.
Lynch HT. 1986. Frequency of hereditary nonpolyposis colorectal carcinoma (Lynch syndromes I and II). Gastroenterology. 90(2):486-489. https://doi.org/10.1016/0016-5085(86)90952-2
5.
Thorson AG, Knezetic JA, Lynch HT. 1999. A century of progress in hereditary nonpolyposis colorectal cancer (lynch syndrome). Diseases of the Colon & Rectum. 42(1):1-9. https://doi.org/10.1007/bf02235175
6.
Lynch HT, Smyrk T, Lynch JF. 1998. Molecular Genetics and Clinical-Pathology Features of Hereditary Nonpolyposis Colorectal Carcinoma (Lynch Syndrome). Oncology. 55(2):103-108. https://doi.org/10.1159/000011843
7.
Cai S. 2003. Clinical characteristics and diagnosis of patients with hereditary nonpolyposis colorectal cancer. WJG. 9(2):284. https://doi.org/10.3748/wjg.v9.i2.284
8.
T. Lynch H, Taylor RJ, Lynch JF, Knezetic JA, Barrows A, Fodde R, Wijnen J, Wagner A. 2003. Multiple Primary Cancer, Including Transitional Cell Carcinoma of the Upper Uroepithelial Tract in a Multigeneration Hnpcc Family: Molecular Genetic, Diagnostic, and Management Implications. Am J Gastroenterology. 98(3):664-670. https://doi.org/10.1111/j.1572-0241.2003.07329.x
9.
Vasen H, Watson P, Mecklin J, Lynch H. 1999. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC?. Gastroenterology. 116(6):1453-1456. https://doi.org/10.1016/s0016-5085(99)70510-x
10.
Lynch HT, Lanspa SJ, Boman BM, Smyrk T, Lynch JF. 1988. Hereditary nonpolyposis colorectal cancer—Lynch syndromes I and II. Gastroenterol Clin North Am. 17679-712.
11.
Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Srivastava S, Jass JR, Khan PM, Lynch H, Smyrk T, Perucho M, et al. 1997. A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: Meeting Highlights and Bethesda Guidelines. JNCI Journal of the National Cancer Institute. 89(23):1758-1762. https://doi.org/10.1093/jnci/89.23.1758
12.
Umar A, Boland CR, Terdiman JP, Syngal S, Chapelle Adl, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, et al. 2004. Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. JNCI Journal of the National Cancer Institute. 96(4):261-268. https://doi.org/10.1093/jnci/djh034
13.
Julié C, Trésallet C, Brouquet A, Vallot C, Zimmermann U, Mitry E, Radvanyi F, Rouleau E, Lidereau R, Coulet F, et al. 2008. Identification in Daily Practice of Patients With Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer): Revised Bethesda Guidelines-Based ApproachVersusMolecular Screening. 103(11):2825-2835. https://doi.org/10.1111/j.1572-0241.2008.02084.x
14.
Salovaara R, Loukola A, Kristo P, Kääriäinen H, Ahtola H, Eskelinen M, Härkönen N, Julkunen R, Kangas E, Ojala S, et al. 2000. Population-Based Molecular Detection of Hereditary Nonpolyposis Colorectal Cancer. JCO. 18(11):2193-2200. https://doi.org/10.1200/jco.2000.18.11.2193
15.
Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, et al. 2005. Screening for the Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer). N Engl J Med. 352(18):1851-1860. https://doi.org/10.1056/nejmoa043146
16.
Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Clendenning M, Sotamaa K, Prior T, Westman JA, et al. 2008. Feasibility of Screening for Lynch Syndrome Among Patients With Colorectal Cancer. JCO. 26(35):5783-5788. https://doi.org/10.1200/jco.2008.17.5950
17.
LYNCH HT. 1966. Hereditary Factors in Cancer. Arch Intern Med. 117(2):206. https://doi.org/10.1001/archinte.1966.03870080050009
18.
Lynch HT, Krush AJ. 1971. Cancer family “G’’ revisited: 1895- 1970. Cancer. 271505-1511.
19.
Vasen HFA, Mecklin J-, Meera Khan P, Lynch HT. 1991. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Diseases of the Colon & Rectum. 34(5):424-425. https://doi.org/10.1007/bf02053699
20.
Aaltonen LA, Salovaara R, Kristo P, Canzian F, Hemminki A, Peltomäki P, Chadwick RB, Kääriäinen H, Eskelinen M, Järvinen H, et al. 1998. Incidence of Hereditary Nonpolyposis Colorectal Cancer and the Feasibility of Molecular Screening for the Disease. N Engl J Med. 338(21):1481-1487. https://doi.org/10.1056/nejm199805213382101
21.
Debniak T, Kurzawski G, Gorski B, Kladny J, Domagala W, Lubinski J. 2000. Value of pedigree/clinical data, immunohistochemistry and microsatellite instability analyses in reducing the cost of determining hMLH1 and hMSH2 gene mutations in patients with colorectal cancer. European Journal of Cancer. 36(1):49-54. https://doi.org/10.1016/s0959-8049(99)00208-7
22.
Cunningham JM, Kim C, Christensen ER, Tester DJ, Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid DJ, Walsh Vockley C, et al. 2001. The Frequency of Hereditary Defective Mismatch Repair in a Prospective Series of Unselected Colorectal Carcinomas. The American Journal of Human Genetics. 69(4):780-790. https://doi.org/10.1086/323658
23.
Piñol V. 2005. Accuracy of Revised Bethesda Guidelines, Microsatellite Instability, and Immunohistochemistry for the Identification of Patients With Hereditary Nonpolyposis Colorectal Cancer. JAMA. 293(16):1986. https://doi.org/10.1001/jama.293.16.1986
24.
Kim H, Jen J, Vogelstein B. 1994. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 145148-156.
25.
Aaltonen LA, Peltomaki P, Mecklin JP. 1994. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 541645-1648.
26.
Jenkins MA, Hayashi S, O?Shea A, Burgart LJ, Smyrk TC, Shimizu D, Waring PM, Ruszkiewicz AR, Pollett AF, Redston M, et al. 2007. Pathology Features in Bethesda Guidelines Predict Colorectal Cancer Microsatellite Instability: A Population-Based Study. Gastroenterology. 133(1):48-56. https://doi.org/10.1053/j.gastro.2007.04.044
27.
Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JJ, Markowitz S, Willson JKV, Hamilton SR, Kinzler KW, et al. 1998. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proceedings of the National Academy of Sciences. 95(12):6870-6875. https://doi.org/10.1073/pnas.95.12.6870
28.
Deng G. 2004. BRAF Mutation Is Frequently Present in Sporadic Colorectal Cancer with Methylated hMLH1, But Not in Hereditary Nonpolyposis Colorectal Cancer. Clinical Cancer Research. 10(1):191-195. https://doi.org/10.1158/1078-0432.ccr-1118-3
29.
Lynch HT, Smyrk T, Lynch JF. 1998. Molecular Genetics and Clinical-Pathology Features of Hereditary Nonpolyposis Colorectal Carcinoma (Lynch Syndrome). Oncology. 55(2):103-108. https://doi.org/10.1159/000011843
30.
Cantor D. 2006. The Frustrations of Families: Henry Lynch, Heredity, and Cancer Control, 1962?1975. Med. Hist.. 50(3):279-302. https://doi.org/10.1017/s0025727300009996
31.
Aaltonen L, Peltomaki P, Leach F, Sistonen P, Pylkkanen L, Mecklin J, Jarvinen H, Powell S, Jen J, Hamilton, et al. 1993. Clues to the pathogenesis of familial colorectal cancer. Science. 260(5109):812-816. https://doi.org/10.1126/science.8484121
32.
Thibodeau S, Bren G, Schaid D. 1993. Microsatellite instability in cancer of the proximal colon. Science. 260(5109):816-819. https://doi.org/10.1126/science.8484122
33.
Fishel R, Lescoe MK, Rao M, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 75(5):1027-1038. https://doi.org/10.1016/0092-8674(93)90546-3
34.
Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomäki P, Sistonen P, Aaltonen LA, Nyström-Lahti M, et al. 1993. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 75(6):1215-1225. https://doi.org/10.1016/0092-8674(93)90330-s
35.
Lindblom A, Tannergård P, Werelius B, Nordenskjöld M. 1993. Genetic mapping of a second locus predisposing to hereditary non?polyposis colon cancer. Nat Genet. 5(3):279-282. https://doi.org/10.1038/ng1193-279
36.
Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A, et al. 1994. Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non-polyposis colon cancer. Nature. 368(6468):258-261. https://doi.org/10.1038/368258a0
37.
Papadopoulos N, Nicolaides N, Wei Y, Ruben S, Carter K, Rosen C, Haseltine W, Fleischmann R, Fraser C, Adams M, et al. 1994. Mutation of a mutL homolog in hereditary colon cancer. Science. 263(5153):1625-1629. https://doi.org/10.1126/science.8128251
38.
Nicolaides NC, Papadopoulos N, Liu B, Weit Y, Carter KC, Ruben SM, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, et al. 1994. Mutations of two P/WS homologues in hereditary nonpolyposis colon cancer. Nature. 371(6492):75-80. https://doi.org/10.1038/371075a0
39.
Akiyama Y, Sato H, Yamada T. 1997. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 573920-3923.
40.
Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M, Igari T, Koike M, Chiba M, Mori T. 1997. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet. 17(3):271-272. https://doi.org/10.1038/ng1197-271
41.
Mecklin J, Sipponen P, Järvinen HJ. 1986. Histopathology of colorectal carcinomas and adenomas in cancer family syndrome. Diseases of the Colon & Rectum. 29(12):849-853. https://doi.org/10.1007/bf02555362
42.
Strand M, Prolla TA, Liskay RM, Petes TD. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 365(6443):274-276. https://doi.org/10.1038/365274a0
43.
MARRA G, SCHÄR P. 1999. Recognition of DNA alterations by the mismatch repair system. 338(1):1-13. https://doi.org/10.1042/bj3380001
44.
Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG, Hollema H, Karrenbeld A, Buys CHC, et al. 2002. Molecular and Clinical Characteristics of MSH6 Variants: An Analysis of 25 Index Carriers of a Germline Variant. The American Journal of Human Genetics. 70(1):26-37. https://doi.org/10.1086/337944
45.
Plaschke J, Engel C, Krüger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslein G, Schulmann K, Gebert J, von Knebel Doeberitz M, et al. 2004. Lower Incidence of Colorectal Cancer and Later Age of Disease Onset in 27 Families With Pathogenic MSH6 Germline Mutations Compared With Families With MLH1 or MSH2 Mutations: The German Hereditary Nonpolyposis Colorectal Cancer Consortium. JCO. 22(22):4486-4494. https://doi.org/10.1200/jco.2004.02.033
46.
Kariola R, Hampel H, Frankel WL, Raevaara TE, de la Chapelle A, Nyström-Lahti M. 2004. MSH6 missense mutations are often associated with no or low cancer susceptibility. Br J Cancer. 91(7):1287-1292. https://doi.org/10.1038/sj.bjc.6602129
47.
Gill S. 2005. Isolated Loss of PMS2 Expression in Colorectal Cancers: Frequency, Patient Age, and Familial Aggregation. Clinical Cancer Research. 11(18):6466-6471. https://doi.org/10.1158/1078-0432.ccr-05-0661
48.
Truninger K, Menigatti M, Luz J, Russell A, Haider R, Gebbers J, Bannwart F, Yurtsever H, Neuweiler J, Riehle H, et al. 2005. Immunohistochemical Analysis Reveals High Frequency of PMS2 Defects in Colorectal Cancer. Gastroenterology. 128(5):1160-1171. https://doi.org/10.1053/j.gastro.2005.01.056
49.
Senter L, Clendenning M, Sotamaa K, Hampel H, Green J, Potter JD, Lindblom A, Lagerstedt K, Thibodeau SN, Lindor NM, et al. 2008. The Clinical Phenotype of Lynch Syndrome Due to Germ-Line PMS2 Mutations. Gastroenterology. 135(2):419-428.e1. https://doi.org/10.1053/j.gastro.2008.04.026
50.
Chang DK, Ricciardiello L, Goel A, Chang CL, Boland CR. 2000. Steady-state Regulation of the Human DNA Mismatch Repair System. J. Biol. Chem.. 275(24):18424-18431. https://doi.org/10.1074/jbc.m001140200
51.
Peltomäki P, Vasen H. 2004. Mutations Associated with HNPCC Predisposition ? Update of ICG-HNPCC/INSiGHT Mutation Database. Disease Markers. 20(4-5):269-276. https://doi.org/10.1155/2004/305058
52.
Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan R, Zborowska E, Kinzler K, Vogelstein B, et al. 1995. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 268(5215):1336-1338. https://doi.org/10.1126/science.7761852
53.
Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M. 1997. Somatic Frameshift Mutations in theBAXGene in Colon Cancers of the Microsatellite Mutator Phenotype. Science. 275(5302):967-969. https://doi.org/10.1126/science.275.5302.967
54.
Souza RF, Appel R, Yin J, Wang S, Smolinski KN, Abraham JM, Zou T, Shi Y, Lei J, Cottrell J, et al. 1996. Microsatellite instability in the insulin?like growth factor II receptor gene in gastrointestinal tumours. Nat Genet. 14(3):255-257. https://doi.org/10.1038/ng1196-255
55.
Malkhosyan S, Rampino N, Yamamoto H, Perucho M. 1996. Frameshift mutator mutations. Nature. 382(6591):499-500. https://doi.org/10.1038/382499a0
56.
Boland CR, Thibodeau SN, Hamilton SR. 1998. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer.. Cancer Res. 585248-5257.
57.
Jass JR, Smyrk TC, Stewart SM. 1994. Pathology of hereditary non-polyposis colorectal cancer. Anticancer Res. 141631-1634.
58.
Jass JR, Do K, Simms LA, Iino H, Wynter C, Pillay SP, Searle J, Radford-Smith G, Young J, Leggett B. 1998. Morphology of sporadic colorectal cancer with DNA replication errors. Gut. 42(5):673-679. https://doi.org/10.1136/gut.42.5.673
59.
Michael-Robinson JM. 2001. Tumour infiltrating lymphocytes and apoptosis are independent features in colorectal cancer stratified according to microsatellite instability status. 48(3):360-366. https://doi.org/10.1136/gut.48.3.360
60.
Smyrk TC, Watson P, Kaul K. 2001. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer. 912417-2422.
61.
Young J, Simms LA, Biden KG, Wynter C, Whitehall V, Karamatic R, George J, Goldblatt J, Walpole I, Robin S, et al. 2001. Features of Colorectal Cancers with High-Level Microsatellite Instability Occurring in Familial and Sporadic Settings. The American Journal of Pathology. 159(6):2107-2116. https://doi.org/10.1016/s0002-9440(10)63062-3
62.
Greenson JK, Bonner JD, Ben-Yzhak O, Cohen HI, Miselevich I, Resnick MB, Trougouboff P, Tomsho LD, Kim E, Low M, et al. 2003. Phenotype of Microsatellite Unstable Colorectal Carcinomas: Well-Differentiated and Focally Mucinous Tumors and the Absence of Dirty Necrosis Correlate With Microsatellite Instability. The American Journal of Surgical Pathology. 27(5):563-570. https://doi.org/10.1097/00000478-200305000-00001
63.
Yearsley M, Hampel H, Lehman A, Nakagawa H, de la Chapelle A, Frankel WL. 2006. Histologic features distinguish microsatellite-high from microsatellite-low and microsatellite-stable colorectal carcinomas, but do not differentiate germline mutations from methylation of the MLH1 promoter. Human Pathology. 37(7):831-838. https://doi.org/10.1016/j.humpath.2006.02.009
64.
Hamilton SR, Vogelstein B, Kudo S. 2000. Carcinoma of the colon and rectum. World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of the Digestive System.. Lyon: IARC Press.
65.
Alexander J, Watanabe T, Wu T, Rashid A, Li S, Hamilton SR. 2001. Histopathological Identification of Colon Cancer with Microsatellite Instability. The American Journal of Pathology. 158(2):527-535. https://doi.org/10.1016/s0002-9440(10)63994-6
66.
Wang L, Cunningham JM, Winters JL. 2003. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 635209-5212.
67.
Kambara T. 2004. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 53(8):1137-1144. https://doi.org/10.1136/gut.2003.037671
68.
McGivern A, Wynter CV, Whitehall VL. 2004. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer. 3101-107.
69.
Nagasaka T, Sasamoto H, Notohara K, Cullings HM, Takeda M, Kimura K, Kambara T, MacPhee DG, Young J, Leggett BA, et al. 2004. Colorectal Cancer With Mutation in BRAF, KRAS, and Wild-Type With Respect to Both Oncogenes Showing Different Patterns of DNA Methylation. JCO. 22(22):4584-4594. https://doi.org/10.1200/jco.2004.02.154
70.
O??Brien MJ, Yang S, Mack C, Xu H, Huang CS, Mulcahy E, Amorosino M, Farraye FA. 2006. Comparison of Microsatellite Instability, CpG Island Methylation Phenotype, BRAF and KRAS Status in Serrated Polyps and Traditional Adenomas Indicates Separate Pathways to Distinct Colorectal Carcinoma End Points. The American Journal of Surgical Pathology. 30(12):1491-1501. https://doi.org/10.1097/01.pas.0000213313.36306.85
71.
Kievit W, De Bruin J, Adang E, Ligtenberg M, Nagengast F, Van Krieken J, Hoogerbrugge N. Current clinical selection strategies for identification of hereditary non-polyposis colorectal cancer families are inadequate: a meta-analysis. 65(4):308-316. https://doi.org/10.1111/j.1399-0004.2004.00220.x
72.
Mitchell RJ. 2004. Accuracy of reporting of family history of colorectal cancer. Gut. 53(2):291-295. https://doi.org/10.1136/gut.2003.027896
73.
Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. 2009. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 11(1):42-65. https://doi.org/10.1097/gim.0b013e31818fa2db
74.
Wu Y, Berends MJ, Mensink RG, Kempinga C, Sijmons RH, van der Zee AG, Hollema H, Kleibeuker JH, Buys CH, Hofstra RM. 1999. Association of Hereditary Nonpolyposis Colorectal Cancer?Related Tumors Displaying Low Microsatellite Instability with MSH6 Germline Mutations. The American Journal of Human Genetics. 65(5):1291-1298. https://doi.org/10.1086/302612
75.
Müller W, Burgart LJ, Krause-Paulus R, Thibodeau SN, Almeida M, Edmonston TB, Boland CR, Sutter C, Jass JR, Lindblom A, et al. 2001. 1(2):87-93. https://doi.org/10.1023/a:1013840907881
76.
Marcus VA, Madlensky L, Gryfe R, Kim H, So K, Millar A, Temple LK, Hsieh E, Hiruki T, Narod S, et al. 1999. Immunohistochemistry for hMLH1 and hMSH2: A Practical Test for DNA Mismatch Repair-Deficient Tumors. The American Journal of Surgical Pathology. 23(10):1248. https://doi.org/10.1097/00000478-199910000-00010
77.
Lindor NM, Burgart LJ, Leontovich O, Goldberg RM, Cunningham JM, Sargent DJ, Walsh-Vockley C, Petersen GM, Walsh MD, Leggett BA, et al. 2002. Immunohistochemistry Versus Microsatellite Instability Testing in Phenotyping Colorectal Tumors. JCO. 20(4):1043-1048. https://doi.org/10.1200/jco.2002.20.4.1043
78.
Kakar S, Burgart LJ, Thibodeau SN, Rabe KG, Petersen GM, Goldberg RM, Lindor NM. 2003. Frequency of loss ofhMLH1 expression in colorectal carcinoma increases with advancing age. Cancer. 97(6):1421-1427. https://doi.org/10.1002/cncr.11206
79.
de Jong AE. 2004. Microsatellite Instability, Immunohistochemistry, and Additional PMS2 Staining in Suspected Hereditary Nonpolyposis Colorectal Cancer. Clinical Cancer Research. 10(3):972-980. https://doi.org/10.1158/1078-0432.ccr-0956-3
80.
Lagerstedt K, Nilbert M, Halvarsson B, Lindblom A, Rambech E. 2004. Microsatellite instability analysis and/or immunostaining for the diagnosis of hereditary nonpolyposis colorectal cancer?. Virchows Archiv. 444(2):135-141. https://doi.org/10.1007/s00428-003-0922-z
81.
CHAI S, ZEPS N, SHEARWOOD A, GRIEU F, CHARLES A, HARVEY J, GOLDBLATT J, JOSEPH D, IACOPETTA B. 2004. Screening for defective DNA mismatch repair in stage II and III colorectal cancer patients. Clinical Gastroenterology and Hepatology. 2(11):1017-1025. https://doi.org/10.1016/s1542-3565(04)00451-3
82.
Southey MC, Jenkins MA, Mead L, Whitty J, Trivett M, Tesoriero AA, Smith LD, Jennings K, Grubb G, Royce SG, et al. 2005. Use of Molecular Tumor Characteristics to Prioritize Mismatch Repair Gene Testing in Early-Onset Colorectal Cancer. JCO. 23(27):6524-6532. https://doi.org/10.1200/jco.2005.04.671
83.
Burgart LJ. 2005. Testing for defective DNA mismatch repair in colorectal carcinoma: a practical guide. Arch Pathol Lab Med. 1291385-1389.
84.
Ward RL, Turner J, Williams R, Pekarsky B, Packham D, Velickovic M, Meagher A, O'Connor T, Hawkins NJ. 2005. Routine testing for mismatch repair deficiency in sporadic colorectal cancer is justified. J. Pathol.. 207(4):377-384. https://doi.org/10.1002/path.1851
85.
Hemminki A, Peltomäki P, Mecklin J, Järvinen H, Salovaara R, Nyström-Lahti M, de la Chapelle A, Aaltonen LA. 1994. Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat Genet. 8(4):405-410. https://doi.org/10.1038/ng1294-405
86.
Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, Papadopolous N, Peltomäki P, de la Chapelle A, Hamilton SR, et al. 1995. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 9(1):48-55. https://doi.org/10.1038/ng0195-48
87.
Halvarsson B, Lindblom A, Johansson L, Lagerstedt K, Nilbert M. 2005. Loss of mismatch repair protein immunostaining in colorectal adenomas from patients with hereditary nonpolyposis colorectal cancer. Mod Pathol. 18(8):1095-1101. https://doi.org/10.1038/modpathol.3800392
88.
Iino H. 2000. DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. 47(1):37-42. https://doi.org/10.1136/gut.47.1.37
89.
Sheridan TB, Fenton H, Lewin MR, Burkart AL, Iacobuzio-Donahue CA, Frankel WL, Montgomery E. 2006. Sessile Serrated Adenomas With Low- and High-Grade Dysplasia and Early Carcinomas. Am J Clin Pathol. 126(4):564-571. https://doi.org/10.1309/c7je8bvl8420v5vt
90.
Gille JJP, Hogervorst FBL, Pals G, Wijnen JT, van Schooten RJ, Dommering CJ, Meijer GA, Craanen ME, Nederlof PM, de Jong D, et al. 2002. Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br J Cancer. 87(8):892-897. https://doi.org/10.1038/sj.bjc.6600565
91.
Wijnen J, van der Klift H, Vasen H, Khan PM, Menko F, Tops C, Meijers Heijboer H, Lindhout D, Møller P, Fodde. R. 1998. MSH2 genomic deletions are a frequent cause of HNPCC. Nat Genet. 20(4):326-328. https://doi.org/10.1038/3795
92.
Nakagawa H, Hampel H, Chapelle Adl. 2003. Identification and characterization of genomic rearrangements ofMSH2 andMLH1 in Lynch syndrome (HNPCC) by novel techniques. Hum. Mutat.. 22(3):258-258. https://doi.org/10.1002/humu.9171
93.
Balmaña J, Stockwell DH, Steyerberg EW, Stoffel EM, Deffenbaugh AM, Reid JE, Ward B, Scholl T, Hendrickson B, Tazelaar J, et al. 2006. Prediction of MLH1 and MSH2 Mutations in Lynch Syndrome. JAMA. 296(12):1469. https://doi.org/10.1001/jama.296.12.1469
94.
InSiGHT DNA Variant Database. [Internet]. Harrow, Middlesex HA1 3UJ, UK: International Society for Hereditary Gastrointestinal Tumours.[cited 16 Sep 2020]. Available from: http://www.insight-database.org/genes
95.
Tomlinson IPM, Novelli MR, Bodmer WF. 1996. The mutation rate and cancer. Proceedings of the National Academy of Sciences. 93(25):14800-14803. https://doi.org/10.1073/pnas.93.25.14800
96.
Toft NJ, Curtis LJ, Sansom OJ, Leitch AL, Wyllie AH, te Riele H, Arends MJ, Clarke AR. 2002. Heterozygosity for p53 promotes microsatellite instability and tumorigenesis on a Msh2 deficient background. Oncogene. 21(41):6299-6306. https://doi.org/10.1038/sj.onc.1205727
97.
Fishel R. 2001. The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res. 617369-7374.
98.
Tomlinson I, Bodmer W. 1999. Selection, the mutation rate and cancer: Ensuring that the tail does not wag the dog. Nat Med. 5(1):11-12. https://doi.org/10.1038/4687
99.
Benatti P. 2005. Microsatellite Instability and Colorectal Cancer Prognosis. Clinical Cancer Research. 11(23):8332-8340. https://doi.org/10.1158/1078-0432.ccr-05-1030
100.
Guidoboni M, Gafà R, Viel A, Doglioni C, Russo A, Santini A, Del Tin L, Macrì E, Lanza G, Boiocchi M, et al. 2001. Microsatellite Instability and High Content of Activated Cytotoxic Lymphocytes Identify Colon Cancer Patients with a Favorable Prognosis. The American Journal of Pathology. 159(1):297-304. https://doi.org/10.1016/s0002-9440(10)61695-1
101.
Samowitz WS, Curtin K, Ma KN. 2001. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol. Biomarkers Prev.. 10917-923.
102.
Watanabe Y, Nakajima H, Nozaki K, Ueda H, Obata K, Hoshiai H, Noda K. 2001. Clinicopathologic and Immunohistochemical Features and Microsatellite Status of Endometrial Cancer of the Uterine Isthmus. International Journal of Gynecological Pathology. 20(4):368-373. https://doi.org/10.1097/00004347-200110000-00009
103.
Ward RL, Cheong K, Ku S, Meagher A, O?Connor T, Hawkins NJ. 2003. Adverse Prognostic Effect of Methylation in Colorectal Cancer Is Reversed by Microsatellite Instability. JCO. 21(20):3729-3736. https://doi.org/10.1200/jco.2003.03.123
104.
Salahshor S, Kressner U, Fischer H, Lindmark G, Glimelius B, Påhlman L, Lindblom A. 1999. Microsatellite instability in sporadic colorectal cancer is not an independent prognostic factor. Br J Cancer. 81(2):190-193. https://doi.org/10.1038/sj.bjc.6690676
105.
Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB, Boland C. 1999. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology. 117(1):123-131. https://doi.org/10.1016/s0016-5085(99)70558-5
106.
Tajima A, Hess MT, Cabrera BL, Kolodner RD, Carethers JM. 2004. The mismatch repair complex hMutS? recognizes 5-fluorouracil-modified DNA: Implications for chemosensitivity and resistance. Gastroenterology. 127(6):1678-1684. https://doi.org/10.1053/j.gastro.2004.10.001
107.
Meyers M, Wagner MW, Mazurek A, Schmutte C, Fishel R, Boothman DA. 2005. DNA Mismatch Repair-dependent Response to Fluoropyrimidine-generated Damage. J. Biol. Chem.. 280(7):5516-5526. https://doi.org/10.1074/jbc.m412105200
108.
Arnold CN, Goel A, Boland CR. 2003. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer. 106(1):66-73. https://doi.org/10.1002/ijc.11176
109.
Hemminki A, Mecklin J, Järvinen H, Aaltonen LA, Joensuu H. 2000. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology. 119(4):921-928. https://doi.org/10.1053/gast.2000.18161
110.
Halling KC, French AJ, McDonnell SK, Burgart LJ, Schaid DJ, Peterson BJ, Moon-Tasson L, Mahoney MR, Sargent DJ, O'Connell MJ, et al. 1999. Microsatellite Instability and 8p Allelic Imbalance in Stage B2 and C Colorectal Cancers. JNCI Journal of the National Cancer Institute. 91(15):1295-1303. https://doi.org/10.1093/jnci/91.15.1295
111.
Elsaleh H, Powell B, Soontrapornchai P, Joseph D, Goria F, Spry N, Iacopetta B. 2000. p53 Gene Mutation, Microsatellite Instability and Adjuvant Chemotherapy: Impact on Survival of 388 Patients with Dukes? C Colon Carcinoma. Oncology. 58(1):52-59. https://doi.org/10.1159/000012079
112.
Boland CR. 2007. Clinical Uses of Microsatellite Instability Testing in Colorectal Cancer: An Ongoing Challenge. JCO. 25(7):754-756. https://doi.org/10.1200/jco.2006.09.4607
113.
Kim GP, Colangelo LH, Wieand HS, Paik S, Kirsch IR, Wolmark N, Allegra CJ. 2007. Prognostic and Predictive Roles of High-Degree Microsatellite Instability in Colon Cancer: A National Cancer Institute?National Surgical Adjuvant Breast and Bowel Project Collaborative Study. JCO. 25(7):767-772. https://doi.org/10.1200/jco.2006.05.8172
114.
Popat S, Hubner R, Houlston R. 2005. Systematic Review of Microsatellite Instability and Colorectal Cancer Prognosis. JCO. 23(3):609-618. https://doi.org/10.1200/jco.2005.01.086
115.
Graham DM, Appelman HD. 1990. Crohn’s- like lymphoid reaction and colorectal carcinoma. A potential histologic prognosticator. Mod Pathol. 3332-335.
116.
Lynch HT, de la Chapelle A. 2003. Hereditary Colorectal Cancer. N Engl J Med. 348(10):919-932. https://doi.org/10.1056/nejmra012242
117.
Watson P, Lin KM, Rodriguez-Bigas MA, Smyrk T, Lemon S, Shashidharan M, Franklin B. 1998. Colorectal carcinoma survival among Hereditary Nonpolyposis Colorectal Carcinoma family members. Cancer. 83259-266.
118.
Pucciarelli S, Agostini M, Viel A, Bertorelle R, Russo V, Toppan P, Lise M. 2003. Early-Age-at-Onset Colorectal Cancer and Microsatellite Instability as Markers of Hereditary Nonpolyposis Colorectal Cancer. Diseases of the Colon & Rectum. 46(3):305-312. https://doi.org/10.1007/s10350-004-6546-9
119.
Mecklin J, Järvinen H. 1993. Treatment and follow-up strategies in hereditary nonpolyposis colorectal carcinoma. Diseases of the Colon & Rectum. 36(10):927-929. https://doi.org/10.1007/bf02050627
120.
Lynch HT, Watson P, Shaw TG, Lynch JF, Harty AE, Franklin BA. 1999. Clinical impact of molecular genetic diagnosis, genetic counceling, and management of hereditary cancer. Cancer. 862457-2463.
121.
Boland CR, Sato J, Saito K, Carethers JM, Marra G, Laghi L, Chauhan. 1998. Genetic Instability and Chromosomal Aberrations in Colorectal Cancer: A Review of the Current Models. Cancer Detect Prev. 22(5):377-382. https://doi.org/10.1046/j.1525-1500.1998.00050.x
122.
Reyes CM, Allen BA, Terdiman JP, Wilson LS. 2002. Comparison of selection strategies for genetic testing of patients with hereditary nonpolyposis colorectal carcinoma. Cancer. 95(9):1848-1856. https://doi.org/10.1002/cncr.10910
123.
Giardiello FM, Brensinger JD, Peterson GM. 2001. AGA technical review on hereditary colorectal cancer and genetic testing. Gastroenterology. 121(1):198-213. https://doi.org/10.1053/gast.2001.25581
124.
Christensen M, Katballe N, Wikman F, Primdahl H, Sørensen FB, Laurberg S, Ørntoft TF. 2002. Antibody-based screening for hereditary nonpolyposis colorectal carcinoma compared with microsatellite analysis and sequencing. Cancer. 95(11):2422-2430. https://doi.org/10.1002/cncr.10979
125.
Salovaara R, Loukola A, Kristo P, Kääriäinen H, Ahtola H, Eskelinen M, Härkönen N, Julkunen R, Kangas E, Ojala S, et al. 2000. Population-Based Molecular Detection of Hereditary Nonpolyposis Colorectal Cancer. JCO. 18(11):2193-2200. https://doi.org/10.1200/jco.2000.18.11.2193
126.
Salahshor S, Koelble K, Rubio C, Lindblom A. 2001. Microsatellite Instability and hMLH1 and hMSH2 Expression Analysis in Familial and Sporadic Colorectal Cancer. Lab Invest. 81(4):535-541. https://doi.org/10.1038/labinvest.3780262
127.
Lanspa SJ, Lynch HT, Smyrk TC, Strayhorn P, Watson P, Lynch JF, Jenkins JX, Appelman HD. 1990. Colorectal Adenomas in the Lynch Syndromes. Gastroenterology. 98(5):1117-1122. https://doi.org/10.1016/0016-5085(90)90323-s
128.
Jass JR. 1995. Colorectal Adenoma Progression and Genetic Change: Is There a Link?. Annals of Medicine. 27(3):301-306. https://doi.org/10.3109/07853899509002581
129.
Annie Yu H, Lin KM, Ota DM, Lynch HT. 2003. Hereditary nonpolyposis colorectal cancer: preventive management. Cancer Treatment Reviews. 29(6):461-470. https://doi.org/10.1016/s0305-7372(03)00084-7
130.
de Vos tot Nederveen Cappel WH. 2003. Decision analysis in the surgical treatment of colorectal cancer due to a mismatch repair gene defect. Gut. 52(12):1752-1755. https://doi.org/10.1136/gut.52.12.1752
131.
Rodríguez-Bigas MA, Vasen HF, Pekka-Mecklin J, Myrhøj T, Rozen P, Bertario L, Järvinen# HJ, Jass JR, Kunitomo K, Nomizu T, et al. 1997. Rectal Cancer Risk in Hereditary Nonpolyposis Colorectal Cancer After Abdominal Colectomy. Annals of Surgery. 225(2):202-207. https://doi.org/10.1097/00000658-199702000-00008
132.
Box JC, Rodriguez-Bigas MA, Weber TK, Petrelli NJ. 1999. Clinical implications of multiple colorectal carcinomas in hereditary nonpolyposis colorectal carcinoma. Diseases of the Colon & Rectum. 42(6):717-721. https://doi.org/10.1007/bf02236924
133.
Dove-Edwin I, Boks D, Goff S, Kenter GG, Carpenter R, Vasen HFA, Thomas HJW. 2002. The outcome of endometrial carcinoma surveillance by ultrasound scan in women at risk of hereditary nonpolyposis colorectal carcinoma and familial colorectal carcinoma. Cancer. 94(6):1708-1712. https://doi.org/10.1002/cncr.10380
134.
Mecklin J, Järvinen HJ. 1986. Clinical features of colorectal carcinoma in cancer family syndrome. Diseases of the Colon & Rectum. 29(3):160-164. https://doi.org/10.1007/bf02555012
135.
Lynch HT, Albano W, Recerbaren J, Lynch PM, Lynch JF, Elston R. 1981. Prolonged survival as a component of hereditary breast and nonpolyposis colon cancer. Medical Hypotheses. 7(9):1201-1209. https://doi.org/10.1016/0306-9877(81)90063-3
136.
Sankila R, Aaltonen L, Jarvinen H, Mecklin J. 1996. Better survival rates in patients with MLH1-associated hereditary colorectal cancer. Gastroenterology. 110(3):682-687. https://doi.org/10.1053/gast.1996.v110.pm8608876
137.
Watson P, Lin KM, Rodriguez-Bigas MA, Smyrk T, Lemon S, Shashidharan M. 1998. Colorectal carcinoma survival among hereditary nonpolyposis colorectal carcinoma family members. Cancer. 83259-266.
138.
NCI: Surveillance, Epidemiology, and End Results (SEER) Program. [Internet]. National Institute of Health.[cited 16 Sep 2020]. Available from: https://seer.cancer.gov/
139.
Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M, Gallinger S. 2000. Tumor Microsatellite Instability and Clinical Outcome in Young Patients with Colorectal Cancer. N Engl J Med. 342(2):69-77. https://doi.org/10.1056/nejm200001133420201
140.
Ramsey SD. 2001. Cost-Effectiveness of Microsatellite Instability Screening as a Method for Detecting Hereditary Nonpolyposis Colorectal Cancer. Ann Intern Med. 135(8_Part_1):577. https://doi.org/10.7326/0003-4819-135-8_part_1-200110160-00008
141.
Shibata D, Peinado MA, lonov Y, Malkhosyan S, Perucho M. 1994. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 6(3):273-281. https://doi.org/10.1038/ng0394-273
142.
Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 363(6429):558-561. https://doi.org/10.1038/363558a0
143.
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al. 2002. Mutations of the BRAF gene in human cancer. Nature. 417(6892):949-954. https://doi.org/10.1038/nature00766
144.
Lynch HT, Smyrk TC. 1998. Identifying Hereditary Nonpolyposis Colorectal Cancer. N Engl J Med. 338(21):1537-1538. https://doi.org/10.1056/nejm199805213382109
登入以繼續

若要繼續閱讀,請登入或建立帳戶。

還沒有帳戶?

為便利客戶閱讀,此頁面中文以機器翻譯完成。雖然我們已盡力確保機器翻譯的準確性,但機器翻譯並非完美。如果您對機器翻譯的內容不滿意,請參考英文版本。