跳轉至內容
Merck
全部照片(2)

文件

805203

Sigma-Aldrich

FK 102 Co (III) TFSI 盐

同義詞:

三(2-(1H-吡唑-1-基)吡啶)三(双(三氟甲烷)磺酰亚胺)钴(III)

登入查看組織和合約定價


About This Item

經驗公式(希爾表示法):
C30H21CoN12O12S6F18
分子量::
1334.86
分類程式碼代碼:
12352103
PubChem物質ID:
NACRES:
NA.23

化驗

98%

品質等級

形狀

powder

mp

194-199 °C

SMILES 字串

O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.N1(C2=NC=CC=C2)N=CC=C1.C3(N4C=CC=N4)=CC=CC=N3.C5(N6C=CC=N6)=CC=CC=N5.[Co+3]

InChI

1S/3C8H7N3.3C2F6NO4S2.Co/c3*1-2-5-9-8(4-1)11-7-3-6-10-11;3*3-1(4,5)14(10,11)9-15(12,13)2(6,7)8;/h3*1-7H;;;;/q;;;3*-1;+3

InChI 密鑰

ILXRZLQXWLMDFQ-UHFFFAOYSA-N

一般說明

FK 102 Co(III)TFSI盐是一种钴(III)配合物,可以用作p型掺杂剂,以控制有机和无机半导体中载流子的类型和密度。TFSI的溶解度可以增加电化学装置中空穴导体的掺杂电势。

應用

FK 102 Co(III)TFSI盐可主要用于制造染料敏化太阳能电池(DSSC)和钙钛矿基太阳能电池(PSC)。
用这种钴配合物大幅度提高液体电解质电池的光电压,或通过固态光伏器件实现超高性能。FK102钴配合物可提供有保证的性能、高重现性、一致的结果,并且具有最高的纯度。与基于三碘化物的氧化还原电解质相比,钴配合物通常可增加光电压,尤其是在较低的光照水平下(例如,在室内应用),从而显著提高设备的功率输出。
推荐用于:
在液基电解液中:通常为0.15-0.2 M的Co(II)和约0.05 M 的Co(II)
在固态光伏电池中:添加至空穴传输材料系统中,重量百分比不超过10%。

法律資訊

Greatcell Solar Materials Pty Ltd. 的产品。Greatcell Solar是Greatcell Solar Materials Pty Ltd.的注册商标。

象形圖

Exclamation mark

訊號詞

Warning

危險聲明

危險分類

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

標靶器官

Respiratory system

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析證明 (COA)

輸入產品批次/批號來搜索 分析證明 (COA)。在產品’s標籤上找到批次和批號,寫有 ‘Lot’或‘Batch’.。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Planar heterojunction perovskite solar cell based on CdS electron transport layer
Abulikemu M, et al.
Thin Solid Films, 636(37), 512-518 (2017)
Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells
Ke W, et al.
Journal of Material Chemistry A, 4(37), 14276-14283 (2016)
Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells
Burschka J, et al.
Chemistry of Materials, 25(15), 2986-2990 (2013)
B P MacLeod et al.
Science advances, 6(20), eaaz8867-eaaz8867 (2020-05-20)
Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research
Julian Burschka et al.
Nature, 499(7458), 316-319 (2013-07-12)
Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films

文章

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

研究重點為可持續且具成本效益的發電系統,以滿足對環保能源日益增加的需求。

相關內容

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務