跳轉至內容
Merck
全部照片(1)

重要文件

409510

Sigma-Aldrich

聚乙二醇二甲基丙烯酸酯

average MN 550, cross-linking reagent polymerization reactions, methacrylate, 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

同義詞:

PEG 二甲基丙烯酸酯

登入查看組織和合約定價


About This Item

線性公式:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
CAS號碼:
MDL號碼:
分類程式碼代碼:
12162002
PubChem物質ID:
NACRES:
NA.23
暫時無法取得訂價和供貨情況

產品名稱

聚乙二醇二甲基丙烯酸酯, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

形狀

liquid

品質等級

分子量

average Mn 550

包含

270-330 ppm BHT as inhibitor
80-120 ppm MEHQ as inhibitor

反應適用性

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

折射率

n20/D 1.466

bp

>200 °C/2 mmHg (lit.)

密度

1.099 g/mL at 25 °C

Ω-end

methacrylate

α-end

methacrylate

聚合物結構

shape: linear
functionality: homobifunctional

儲存溫度

2-8°C

SMILES 字串

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

InChI 密鑰

STVZJERGLQHEKB-UHFFFAOYSA-N

尋找類似的產品? 前往 產品比較指南

應用


  • PDGF-AA loaded photo-crosslinked chitosan-based hydrogel for promoting wound healing.: This study investigates the use of a chitosan-based hydrogel, photo-crosslinked with Poly(ethylene glycol) dimethacrylate (PEGDMA), to deliver PDGF-AA and enhance wound healing. The results demonstrate significant improvements in wound closure rates and tissue regeneration (Cai et al., 2024).

  • Reducing the foreign body response on human cochlear implants and their materials in vivo with photografted zwitterionic hydrogel coatings.: This research explores the application of PEGDMA in zwitterionic hydrogel coatings to minimize foreign body responses in cochlear implants. The coatings significantly reduced inflammation and improved biocompatibility in vivo (Horne et al., 2023).

  • Full factorial design of experiment-based and response surface methodology approach for evaluating variation in uniaxial compressive mechanical properties, and biocompatibility of photocurable PEGDMA-based scaffolds.: This study uses a full factorial design to optimize the mechanical properties and biocompatibility of PEGDMA-based scaffolds, highlighting their potential use in tissue engineering and regenerative medicine (Bharadwaz et al., 2023).

  • Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density.: This article examines how varying the cross-link density in PEGDMA-based hydrogel coatings affects their antifouling and mechanical properties. The findings are relevant for the development of durable and biocompatible medical device coatings (Jensen et al., 2021).

  • Biocompatible and photocrosslinkable poly(ethylene glycol)/keratin biocomposite hydrogels.: The research presents the development of PEGDMA/keratin biocomposite hydrogels, demonstrating excellent biocompatibility and potential applications in drug delivery systems and tissue engineering (Wang et al., 2021).

儲存類別代碼

10 - Combustible liquids

水污染物質分類(WGK)

WGK 1

閃點(°F)

Not applicable

閃點(°C)

Not applicable


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Laura Ferlauto et al.
Frontiers in neuroscience, 12, 648-648 (2018-10-05)
Reducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum
Albert H Park et al.
The Laryngoscope, 123(4), 1043-1048 (2013-03-21)
To determine the resorption rate and biocompatibility characteristics of novel cross-linked hydrogel ventilation tubes and varied formulations of polyester ventilation tubes in a Chinchilla model. Animal Study. Three cross-linked glycosaminoglycan hydrogel ventilation tubes fabricated by cross-linking thiol-modified chondroitin sulfate or
Katarzyna Kotynia et al.
Polimery w medycynie, 43(1), 21-28 (2013-07-03)
PURPOSE OF JOB: Currently, there isa need to increase comfort and visual acuity man. Simultaneously improving biocompatibility and minimizing the impact of the material on the physiology of the cornea is the primary driving force behind the evolution of materials
Kenneth C Koehler et al.
Biomaterials, 34(16), 4150-4158 (2013-03-08)
We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion
Craig Halberstadt et al.
Methods in molecular biology (Clifton, N.J.), 1001, 279-287 (2013-03-16)
Delivery of cells to organs has primarily relied on formulating the cells in a nonviscous liquid carrier. We have developed a methodology to isolate selected renal cells (SRC) that have provided functional stability to damaged kidneys in preclinical models (Kelley

文章

Scaffold patterning with poly(ethylene glycol)-based hydrogels for cell presence in 2D and 3D environments on photoactive substrates.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Questions

Reviews

No rating value

Active Filters

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務