跳转至内容
Merck

蛋白表达

CMV启动子哺乳动物蛋白表达载体

基因组学、克隆学和大量分子生物学技术的发展使研究人员能在众多生物系统中表达异源蛋白。表达重组蛋白的能力为研究人员提供了广泛而强大的下游应用空间,以便进一步开展研究。小规模蛋白超表达有助于促进以了解蛋白质功能为目的的研究。而大规模生产蛋白则对于酶、抗体和疫苗的生产至关重要。确定最佳的细胞生长和蛋白表达条件对小规模和大规模蛋白质表达系统都十分关键。无论蛋白翻译后修饰所需的是原核表达系统或是真核表达系统,细胞类型都将在很大程度上决定最佳蛋白表达所需的工具和试剂。


相关技术文章

  • Review the 10 steps of glycolysis in the Embden-Meyerhof-Parnas glycolytic pathway. Easily compare reaction stages and buy the enzymes for your life science research.
  • 基因工程和克隆的发展为研究领域开辟了表达和分离异源蛋白质的许多可能性。技术上巨大进步使得能够大规模表达和分离重组蛋白。
  • 蛋白质合成是一个复杂、多步骤过程,涉及到很多酶以及构象排列。但是,阻碍细菌蛋白质合成的大部分抗生素对该过程的干扰发生在70S细菌核糖体的30S亚基或50S亚基。
  • FLAG®和3xFLAG®表达载体和产品用于细菌和哺乳动物表达载体以及蛋白质检测和纯化。
  • IUBMB-Sigma- Nicholson Metabolic Pathway Charts. The 22nd edition of the IUBMB-Sigma-Nicholson Metabolic Pathways Chart contains updated pathways involved in ATP metabolism in the mitochondria and chloroplast. It contains the Glycolytic Pathway followed by the TCA (Krebs) Cycle and the Respiratory Chain which together lead to the synthesis of ATP by ATP Synthase.
  • 查看完整内容 (153)

相关实验方案

查找更多文章和实验方案


蛋白表达载体

表达载体或质粒是DNA的环状序列,研究人员通常将其作为承载基因的工具,而该基因则编码目的蛋白。随后将含目的基因的质粒转化或转染到细胞中,进行蛋白超表达。质粒中含各种有用部分,有助于克隆、克隆选择、蛋白表达和蛋白纯化。这些部分包括但不限于多克隆位点(MCS)、用于克隆选择的抗生素抗性基因、用于蛋白鉴定和纯化的独特标签以及驱动蛋白表达的强启动子区域。蛋白表达载体种类繁多,根据特定应用需求和用于蛋白表达的细胞类型,这些载体中的许多部分是可互换的。

细菌、哺乳动物和其他蛋白质表达系统

因生长速度快, 大肠杆菌 中的质粒转化仅需几分钟,细菌是生产重组蛋白的主要微生物。细菌蛋白表达依赖70S细菌核糖体中的30S和50S核糖体亚基。为了防止无质粒细胞的生长,使用含抗生素抗性基因的质粒作为筛选方法,鉴定和分离掺入含目的蛋白编码序列质粒的细菌。通常需要进行额外的基因测序确定目的基因序列是否存在,但许多阻断细菌蛋白合成的抗生素通常用于去除无质粒的细菌。除细菌外,昆虫、酵母和哺乳动物细胞系也常用于蛋白表达。然而,与细菌不同,真核细胞系含额外的分子机制可进行翻译后修饰(例如糖基化),常对蛋白功能至关重要,对下游分析必不可少。

重组蛋白表达的应用

重组蛋白是指在蛋白表达质粒内编码的蛋白,经过修饰实现最大程度的蛋白表达/纯化或突变进而评估蛋白功能。增加、删除或改变蛋白编码序列的能力(即使是针对单个核苷酸),为研究人员提供了非常强大的工具,可以研究大量的基础问题,阐明蛋白在健康组织和疾病组织中的功能。重组蛋白表达技术的意义远远超出了基础研究的应用范围,对于研发拯救生命的药物和疫苗至关重要。



登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?