跳转至内容
Merck
  • Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure.

Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure.

Toxicological sciences : an official journal of the Society of Toxicology (2014-03-13)
Xue Fu, Yanshu Zhang, Wendy Jiang, Andrew Donald Monnot, Christopher Alexander Bates, Wei Zheng
摘要

Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury.

材料
货号
品牌
产品描述

Sigma-Aldrich
Trizma ® 碱, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
碳酸氢钠, ACS reagent, ≥99.7%
Sigma-Aldrich
Trizma ® 碱, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
蔗糖, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
甘氨酸, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
碳酸氢钠, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
蔗糖, ≥99.5% (GC)
Sigma-Aldrich
甘氨酸, suitable for electrophoresis, ≥99%
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
蔗糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
碳酸氢钠, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
四甲基乙二胺, BioReagent, suitable for electrophoresis, ≥99.0%
Sigma-Aldrich
氯化钙 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
甘氨酸, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
蔗糖, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Supelco
蔗糖, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
氯化钙, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
USP
蔗糖, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sigma 7-9®®, ≥99% (titration), crystalline
Sigma-Aldrich
四甲基乙二胺, BioReagent, for molecular biology, ≥99% (GC)