Przejdź do zawartości
Merck

Biotinylated non-ionic amphipols for GPCR ligands screening.

Methods (San Diego, Calif.) (2020-06-09)
Michaël Bosco, Marjorie Damian, Vinay Chauhan, Mélanie Roche, Pierre Guillet, Jean-Alain Fehrentz, Françoise Bonneté, Ange Polidori, Jean-Louis Banères, Grégory Durand
ABSTRAKT

We present herein the synthesis of biotin-functionalized polymers (BNAPols) that have been developed for the fixation of membrane proteins (MPs) onto surfaces. BNAPols were synthesized by free-radical polymerization of a tris(hydroxymethyl)acrylamidomethane (THAM)-derived amphiphilic monomer in the presence of a thiol-based transfer agent with an azido group. Then a Huisgen-cycloaddition reaction was performed with Biotin-(PEG)8-alkyne that resulted in formation of the biotinylated polymers. The designed structure of BNAPols was confirmed by NMR spectroscopy, and a HABA/avidin assay was used for estimating the percentage of biotin grafted on the polymer end chain. The colloidal characterization of these biotin-functionalized polymers was done using both dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. BNAPols were used to stabilize a model G protein-coupled receptor (GPCR), the human Growth Hormone Secretagogue Receptor (GHSR), out of its membrane environment. Subsequent immobilization of the BNAPols:GHSR complex onto a streptavidin-coated surface allowed screening of ligands based on their ability to bind the immobilized receptor. This opens the way to the use of biotinylated NAPols to immobilize functional, unmodified, membrane proteins, providing original sensor devices for multiple applications including innovative ligand screening assays.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
2-Ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline, ≥99%
Sigma-Aldrich
2-Bromoethyl isocyanate, ≥90%