Przejdź do zawartości
Merck

Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation.

Macromolecular bioscience (2020-02-15)
Ruriko Sekiya-Aoyama, Yoshinori Arisaka, Nobuhiko Yui
ABSTRAKT

Polyrotaxanes, consisting of poly(ethylene glycol) and α-cyclodextrins, are mechanically interlocked supermolecules. The structure allows α-cyclodextrins to move along the polymer, referred to as molecular mobility. Here, polyrotaxane-based triblock copolymers, composed of polyrotaxanes with different degrees of methylation and poly(benzyl methacrylate) at both terminals, are coated on culture surfaces to fabricate dynamic biointerfaces for myocyte differentiation. The molecular mobility increases with the degree of methylation and the contact angle hysteresis of water droplets and air bubbles. When the mouse myoblast cell line C2C12 is cultured on methylated polyrotaxane surfaces, the expression levels of myogenesis-related genes, myogenin (Myog) and myosin heavy chain (Myhc) are altered by the degree of methylation. Polyrotaxane surfaces with intermediate degrees of methylation promote the highest expression levels among all the surfaces. The polyrotaxane surface provides an appropriate environment for myocyte differentiation by accurately adjusting the degrees of methylation.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
(S)-(−)-2-Amino-3-phenyl-1-propanol, 98%, optical purity ee: 99% (HPLC)
Sigma-Aldrich
4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride, 95% (HPLC)