跳转至内容
Merck
  • Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members.

Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members.

The Journal of biological chemistry (2007-06-08)
Gregory Kaler, David M Truong, Akash Khandelwal, Megha Nagle, Satish A Eraly, Peter W Swaan, Sanjay K Nigam
摘要

Organic anion transporters (OATs, SLC22) interact with a remarkably diverse array of endogenous and exogenous organic anions. However, little is known about the structural features that determine their substrate selectivity. We examined the substrate binding preferences and transport function of olfactory organic anion transporter, Oat6, in comparison with the more broadly expressed transporter, Oat1 (first identified as NKT). In analyzing interactions of both transporters with over 40 structurally diverse organic anions, we find a correlation between organic anion potency (pKi) and hydrophobicity (logP) suggesting a hydrophobicity-driven association with transporter-binding sites, which appears particularly prominent for Oat6. On the other hand, organic anion binding selectivity between Oat6 and Oat1 is influenced by the anion mass and net charge. Smaller mono-anions manifest greater potency for Oat6 and di-anions for Oat1. Comparative molecular field analysis confirms these mechanistic insights and provides a model for predicting new OAT substrates. By comparative molecular field analysis, both hydrophobic and charged interactions contribute to Oat1 binding, although it is predominantly the former that contributes to Oat6 binding. Together, the data suggest that, although the three-dimensional structures of these two transporters may be very similar, the binding pockets exhibit crucial differences. Furthermore, for six radiolabeled substrates, we assessed transport efficacy (Vmax) for Oat6 and Oat1. Binding potency and transport efficacy had little correlation, suggesting that different molecular interactions are involved in substrate binding to the transporter and translocation across the membrane. Substrate specificity for a particular transporter may enable design of drugs for targeting to specific tissues (e.g. olfactory mucosa). We also discuss how these data suggest a possible mechanism for remote sensing between OATs in different tissue compartments (e.g. kidney, olfactory mucosa) via organic anions.

材料
货号
品牌
产品描述

Sigma-Aldrich
丙酸, ≥99.5%
Sigma-Aldrich
己二酸, 99%
Sigma-Aldrich
丙酮酸, 98%
Sigma-Aldrich
布洛芬, ≥98% (GC)
Sigma-Aldrich
丁酸, ≥99%
Sigma-Aldrich
青霉素G 钠盐, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
乙酰水杨酸, ≥99.0%
Sigma-Aldrich
羧苄青霉素 二钠盐, BioReagent, suitable for plant cell culture
Sigma-Aldrich
前列腺素E2, synthetic, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
己酸, ≥99%
Sigma-Aldrich
异戊酸, 99%
Sigma-Aldrich
阿司匹林, meets USP testing specifications
Sigma-Aldrich
3-羟基丁酸, 95%
Sigma-Aldrich
赭曲霉毒素A, from Petromyces albertensis, ≥98% (HPLC)
Sigma-Aldrich
2-乙基己酸, ≥99%
Sigma-Aldrich
戊二酸, 99%
Sigma-Aldrich
苯甲酸, ACS reagent, ≥99.5%
Sigma-Aldrich
水杨酸, ACS reagent, ≥99.0%
Sigma-Aldrich
马尿酸, 98%
Sigma-Aldrich
丁酸, natural, ≥99%, FCC, FG
Sigma-Aldrich
2-甲基丁酸, 98%
Sigma-Aldrich
庚酸, ≥99.0% (GC)
Sigma-Aldrich
水杨酸, ≥99%, FG
Sigma-Aldrich
水杨酸, BioXtra, ≥99.0%
Sigma-Aldrich
丁酸, ≥99%, FG
Sigma-Aldrich
乙酰水杨酸, analytical standard
Sigma-Aldrich
青霉素G 钠盐, ~1650 U/mg
Sigma-Aldrich
苯甲酸, ≥99.5%, FCC, FG
Supelco
布洛芬
Sigma-Aldrich
辛二酸, 98%