Direkt zum Inhalt
Merck
  • Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels.

Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels.

Acta biomaterialia (2009-06-11)
Idalis Villanueva, Courtney A Weigel, Stephanie J Bryant
ZUSAMMENFASSUNG

The pericellular matrix (PCM) surrounding chondrocytes is thought to play an important role in transmitting biochemical and biomechanical signals to the cells, which regulates many cellular functions including tissue homeostasis. To better understand chondrocytes interactions with their PCM, three-dimensional poly(ethylene glycol) (PEG) hydrogels containing Arg-Gly-Asp (RGD), the cell-adhesion sequence found in fibronectin and which is present in the PCM of cartilage, were employed. RGD was incorporated into PEG hydrogels via tethers at 0.1, 0.4 and 0.8 mM concentrations. Bovine chondrocytes were encapsulated in the hydrogels and subjected to dynamic compressive strains (0.3 Hz, 18% amplitude strain) for 48h, and their response assessed by cell morphology, ECM gene expression, cell proliferation and matrix synthesis. Incorporation of RGD did not influence cell morphology under free swelling conditions. However, the level of cell deformation upon an applied strain was greater in the presence of RGD. In the absence of dynamic loading, RGD appears to have a negative effect on chondrocyte phenotype, as seen by a 4.7-fold decrease in collagen II/collagen I expressions in 0.8mM RGD constructs. However, RGD had little effect on early responses of chondrocytes (i.e. cell proliferation and matrix synthesis/deposition). When isolating RGD as a biomechanical cue, cellular response was very different. Chondrocyte phenotype (collagen II/collagen I ratio) and proteoglycan synthesis were enhanced with higher concentrations of RGD. Overall, our findings demonstrate that RGD ligands enhance cartilage-specific gene expression and matrix synthesis, but only when mechanically stimulated, suggesting that cell-matrix interactions mediate chondrocyte response to mechanical stimulation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Poly(ethylenglykol), average Mn 400
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 8,000
Sigma-Aldrich
Poly(ethylenglykol), average mol wt 8,000, powder
Sigma-Aldrich
Poly(ethylenglykol), average Mn 6,000
Sigma-Aldrich
Poly(ethylenglykol), average Mn 3,350, powder
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 4,000
Sigma-Aldrich
Poly(ethylenglykol), average Mn 300
Sigma-Aldrich
Poly(ethylenglykol), average Mn 4,000, platelets
Sigma-Aldrich
Poly(ethylenglykol), average mol wt 400
Sigma-Aldrich
Poly(ethylenglykol), average Mn 20,000
Sigma-Aldrich
Poly(ethylenglykol), 35,000
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, for molecular biology, 6,000
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 35,000
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 400
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 6,000
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 2,000
Sigma-Aldrich
Poly(ethylenglykol), average Mn 600, waxy solid (moist)
Sigma-Aldrich
Poly(ethylenglykol), average mol wt 1,450
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 20,000
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 300
Sigma-Aldrich
Poly(ethylenglykol), average Mn 950-1,050
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 3,350
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 200
Sigma-Aldrich
Poly(ethylenglykol), average Mn 2,050, chips
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 10,000
Sigma-Aldrich
Poly(ethylenglykol), average Mn 10,000, flakes
Sigma-Aldrich
Poly(ethylenglykol), 12,000
Sigma-Aldrich
Poly(ethylenglykol), Hybri-Max, mol wt 3,000-3,700, waxy solid, BioReagent, suitable for hybridoma
Sigma-Aldrich
Poly(ethylenglykol), BioUltra, 600
Sigma-Aldrich
Poly(ethylenglykol), average Mv ~8,000, powder (crystalline)