コンテンツへスキップ
Merck
  • Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.

Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.

Journal of biomedical materials research. Part B, Applied biomaterials (2014-12-24)
Michal Dziadek, Justyna Pawlik, Elzbieta Menaszek, Ewa Stodolak-Zych, Katarzyna Cholewa-Kowalska
要旨

In this study, two different composition gel derived silica-rich (S2) or calcium-rich (A2) bioactive glasses (SBG) from a basic CaO-P2 O5 -SiO2 system were incorporated into poly(ε-caprolactone) (PCL) matrix to obtain novel bioactive composite scaffolds for bone tissue engineering applications. The composites were fabricated in the form of highly porous 3D scaffolds using following preparation methods: solvent casting particulate leaching (SCPL), solid-liquid phase separation, phase inversion (PI). Scaffolds containing 21% vol. of each bioactive glass were characterized for architecture, crystallinity, hydrolytic degradation, surface bioactivity, and cellular response. Results indicated that the use of different preparation methods leads to obtain highly porous (60-90%) materials with differentiated morphology: pore shape, size, and distributions. Thermal analysis (DSC) showed that the preparation method of materials and addition of bioactive glass particles into polymer matrix induced the changes of PCL crystallinity. Composites obtained by SCPL and PI method containing A2 SBG rapidly formed a hydroxyapatite calcium phosphate surface layer after incubation in SBF. Bioactive glasses used as filler in composite scaffolds could neutralize the released acidic by-products of the polymer degradation. Preliminary in vitro biological studies of the composites in contact with osteoblastic cells showed good biocompatibility of the obtained materials. Addition of bioactive glass into the PCL matrix promotes mineralization estimated on the basis of the ALP activity. These results suggest that through a process of selection appropriate methods of preparation and bioglass composition it is possible to design and obtain porous materials with suitable properties for regeneration of bone tissue.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
エチルアルコール(純粋), 190 proof, for molecular biology
Sigma-Aldrich
オルトケイ酸テトラエチル, reagent grade, 98%
Sigma-Aldrich
オルトケイ酸テトラエチル, ≥99.0% (GC)
Sigma-Aldrich
エタノール, JIS special grade, ≥99.5%
Sigma-Aldrich
トリエチル ホスファート, ReagentPlus®, ≥99.8%
Sigma-Aldrich
エタノール, SAJ first grade, ≥99.5%
Sigma-Aldrich
オルトケイ酸テトラエチル, 99.999% trace metals basis
Sigma-Aldrich
N,N′-ジスクシンイミジルカルボナート, ≥95%
Sigma-Aldrich
エチルアルコール(純粋), 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
エタノール, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
エタノール 溶液, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
エタノール, puriss. p.a., absolute, ≥99.8% (GC)
Supelco
エタノール標準品10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
オルトケイ酸テトラエチル, packaged for use in deposition systems
Sigma-Aldrich
エタノール, ≥99.5%, suitable for HPLC
Sigma-Aldrich
エタノール, JIS special grade, 94.8-95.8%
Sigma-Aldrich
エタノール, ≥99.5%
Sigma-Aldrich
エタノール, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
エタノール, JIS first grade, 94.8-95.8%
Sigma-Aldrich
アクリジンオレンジ 塩酸塩 溶液, 10 mg/mL in H2O, ≥95.0% (HPLC)
Sigma-Aldrich
エタノール, ≥99.5%, SAJ super special grade
Sigma-Aldrich
エタノール, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
オルトケイ酸テトラエチル, SAJ first grade, ≥95.0%
Sigma-Aldrich
エタノール, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
エタノール, JIS 300, ≥99.5%, for residue analysis