コンテンツへスキップ
Merck
  • Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity.

Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity.

Glia (2020-10-13)
Josine E G Vaes, Caren M van Kammen, Chloe Trayford, Annette van der Toorn, Torben Ruhwedel, Manon J N L Benders, Rick M Dijkhuizen, Wiebke Möbius, Sabine H van Rijt, Cora H Nijboer
要旨

Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
ポリ-D-リシン 臭化水素酸塩, mol wt 70,000-150,000, lyophilized powder, γ-irradiated, BioReagent, suitable for cell culture
Sigma-Aldrich
デオキシリボヌクレアーゼ I ウシ膵臓由来, Type IV, lyophilized powder, ≥2,000 Kunitz units/mg protein
Sigma-Aldrich
トリプシン ブタ膵臓由来, lyophilized powder, BioReagent, suitable for cell culture, 1,000-2,000 BAEE units/mg solid
Sigma-Aldrich
トリプシン ウシ膵臓由来, TPCK Treated, essentially salt-free, lyophilized powder, ≥10,000 BAEE units/mg protein
Sigma-Aldrich
ポリ-L-オルニチン 臭化水素酸塩, mol wt 30,000-70,000
Sigma-Aldrich
Anti-Olig-2 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
パラホルムアルデヒド, meets analytical specification of DAC, 95.0-100.5%
Sigma-Aldrich
グルタルアルデヒド 溶液, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
抗Olig2抗体、クローン211F1.1, clone 211F1.1, from mouse
Sigma-Aldrich
モノクロナール抗MAP2 マウス宿主抗体, clone HM-2, ascites fluid
Sigma-Aldrich
Brij® L23, main component: tricosaethylene glycol dodecyl ether
Sigma-Aldrich
抗ミエリン塩基性タンパク質抗体 a.a.82~87, culture supernatant, clone 12, Chemicon®
Sigma-Aldrich
N-アセチル-L-システイン, BioXtra, ≥99% (TLC)
Sigma-Aldrich
ポリ-DL-オルニチン 臭化水素酸塩, mol wt 15,000-30,000
Sigma-Aldrich
アミロイドタンパク質非Aβ成分, ≥80% (HPLC)