The vascular endothelial growth factor receptor (VEGFR) tyrosine kinases are being explored as targets for antiangiogenic cancer therapy. Radiotherapy also inhibits tumor growth and affects vasculature. We investigated the combination of the potent VEGFR tyrosine kinase inhibitor AZD2171 and ionizing
Inhibition of vascular endothelial growth factor-A (VEGF) signaling is a promising therapeutic approach that aims to stabilize the progression of solid malignancies by abrogating tumor-induced angiogenesis. This may be accomplished by inhibiting the kinase activity of VEGF receptor-2 (KDR), which
PARP inhibitors target BRCA mutations and defective homologous recombination repair (HRR) for the treatment of epithelial ovarian cancer (EOC). However, the treatment of HRR-proficient EOC with PARP inhibitors remains challenging. The objective of this study was to determine whether the
Clinical cancer research : an official journal of the American Association for Cancer Research, 12(1), 281-288 (2006-01-07)
This pilot study combined physiologic imaging, microcomputed tomography, and histologic tumor evaluation with a xenograft model of breast cancer to identify surrogates likely to correlate with response to AZD2171, an inhibitor of the vascular endothelial growth factor (VEGF) receptor tyrosine
Cediranib, a pan-tyrosine kinase inhibitor is showing promising results for the treatment of several solid tumours. In breast cancer, its effects remain unclear, and there are no predictive biomarkers. Several studies have examined the expression profiles of microRNAs (miRNAs) in response