Passa al contenuto
Merck
Tutte le immagini(2)

Documenti

932310

Sigma-Aldrich

Lithium fluoride

Sinonimo/i:

LiF, Fluorolithium

Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali


About This Item

Formula condensata:
LiF
Numero CAS:
Peso molecolare:
25.94
Numero MDL:
Codice UNSPSC:
12352302
NACRES:
NA.23

Saggio

≥99%

Livello qualitativo

P. eboll.

1681 °C

Punto di fusione

845 °C (lit.)

Solubilità

H2O: 2.9 g/L

Densità

2.64 g/mL at 25 °C (lit.)

Energia dell’orbitale

HOMO 14 eV 
LUMO 1.0 eV 

Stringa SMILE

[Li+].[F-]

InChI

1S/FH.Li/h1H;/q;+1/p-1
PQXKHYXIUOZZFA-UHFFFAOYSA-M

Cerchi prodotti simili? Visita Guida al confronto tra prodotti

Categorie correlate

Applicazioni

LiF can be used in thermoluminescent; perovskite light-emitting diodes; rechargeable batteries and MXenes applications. Lithium fluoride crystals are transparent to ultraviolet (UV) light and are used in UV optics. Lithium fluoride is used in the main route of fabrication of Mxenes by exfoliating MAX phases.

Pittogrammi

Skull and crossbones

Avvertenze

Danger

Indicazioni di pericolo

Classi di pericolo

Acute Tox. 3 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Organi bersaglio

Respiratory system

Rischi supp

Codice della classe di stoccaggio

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

Classe di pericolosità dell'acqua (WGK)

WGK 2

Punto d’infiammabilità (°F)

Not applicable

Punto d’infiammabilità (°C)

Not applicable


Certificati d'analisi (COA)

Cerca il Certificati d'analisi (COA) digitando il numero di lotto/batch corrispondente. I numeri di lotto o di batch sono stampati sull'etichetta dei prodotti dopo la parola ‘Lotto’ o ‘Batch’.

Possiedi già questo prodotto?

I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.

Visita l’Archivio dei documenti

Xiaolei Yang et al.
Nature communications, 9(1), 570-570 (2018-02-10)
Perovskite light-emitting diodes (LEDs) are attracting great attention due to their efficient and narrow emission. Quasi-two-dimensional perovskites with Ruddlesden-Popper-type layered structures can enlarge exciton binding energy and confine charge carriers and are considered good candidate materials for efficient LEDs. However
Xiulin Fan et al.
Science advances, 4(12), eaau9245-eaau9245 (2018-12-28)
Solid-state electrolytes (SSEs) are receiving great interest because their high mechanical strength and transference number could potentially suppress Li dendrites and their high electrochemical stability allows the use of high-voltage cathodes, which enhances the energy density and safety of batteries.
Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?
Ko J, et al.
Ceramics International, 45(1), 30-49 (2019)
Mingfu He et al.
Proceedings of the National Academy of Sciences of the United States of America, 117(1), 73-79 (2019-12-19)
Lithium is the most attractive anode material for high-energy density rechargeable batteries, but its cycling is plagued by morphological irreversibility and dendrite growth that arise in part from its heterogeneous "native" solid electrolyte interphase (SEI). Enriching the SEI with lithium
Bing Zhou et al.
ACS applied materials & interfaces, 12(4), 4895-4905 (2020-01-04)
Flexible, lightweight, robust, and multifunctional characteristics are greatly desirable for next-generation wearable electromagnetic interference (EMI) shielding materials. In this work, an alternating multilayered structure with robust polymer frame layers and directly contacted conducting layers was designed to prepare high-performance EMI

Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..

Contatta l'Assistenza Tecnica.