Ugrás a tartalomra
Merck
  • Negative Transconductance Heterojunction Organic Transistors and their Application to Full-Swing Ternary Circuits.

Negative Transconductance Heterojunction Organic Transistors and their Application to Full-Swing Ternary Circuits.

Advanced materials (Deerfield Beach, Fla.) (2019-05-23)
Hocheon Yoo, Sungmin On, Seon Baek Lee, Kilwon Cho, Jae-Joon Kim
KIVONAT

Multivalued logic (MVL) computing could provide bit density beyond that of Boolean logic. Unlike conventional transistors, heterojunction transistors (H-TRs) exhibit negative transconductance (NTC) regions. Using the NTC characteristics of H-TRs, ternary inverters have recently been demonstrated. However, they have shown incomplete inverter characteristics; the output voltage (VOUT ) does not fully swing from VDD to GND . A new H-TR device structure that consists of a dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) layer stacked on a PTCDI-C13 layer is presented. Due to the continuous DNTT layer from source to drain, the proposed device exhibits novel switching behavior: p-type off/p-type subthreshold region /NTC/ p-type on. As a result, it has a very high on/off current ratio (≈105 ) and exhibits NTC behavior. It is also demonstrated that an array of 36 of these H-TRs have 100% yield, a uniform on/off current ratio, and uniform NTC characteristics. Furthermore, the proposed ternary inverter exhibits full VDD -to-GND swing of VOUT with three distinct logic states. The proposed transistors and inverters exhibit hysteresis-free operation due to the use of a hydrophobic gate dielectric and encapsulating layers. Based on this, the transient operation of a ternary inverter circuit is demonstrated for the first time.